DOI QR코드

DOI QR Code

Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies

  • Saunders, Gary W. (Centre for Environmental and Molecular Algal Research, Department of Biology, University of New Brunswick) ;
  • Moore, Tanya E. (Centre for Environmental and Molecular Algal Research, Department of Biology, University of New Brunswick)
  • Received : 2013.02.05
  • Accepted : 2013.02.26
  • Published : 2013.03.15

Abstract

This review provides a comprehensive summary of the PCR primers and profiles currently in use in our laboratory for red algal DNA barcoding and phylogenetic research. While work focuses on florideophyte taxa, many of the markers have been applied successfully to the Bangiales, as well as other lineages previously assigned to the Bangiophyceae sensu lato. All of the primers currently in use with their respective amplification profiles and strategies are provided, which can include full fragment, overlapping fragments and what might best be called "informed overlapping fragments", i.e., a fragment for a marker is amplified and sequenced for a taxon and those sequence data are then used to identify the best primers to amplify the remaining fragment(s) for that marker. We extend this strategy for the more variable markers with sequence from the external PCR primers used to "inform" the selection of internal sequencing primers. This summary will hopefully serve as a useful resource to systematists in the red algal community.

Keywords

References

  1. Bird, C. J., Rice, E. L., Murphy, C. A. & Ragan, M. A. 1992. Phylogenetic relationships in the Gracilariales (Rhodophyta) as determined by 18S rDNA sequences. Phycologia 31:510-522. https://doi.org/10.2216/i0031-8884-31-6-510.1
  2. Clarkston, B. E. & Saunders, G. W. 2010. A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthora timburtonii sp. nov. Botany 88:119-131. https://doi.org/10.1139/B09-101
  3. Clayden, S. L. & Saunders, G. W. 2010. Recognition of Rubrointrusa membranacea gen. et comb. nov., Rhodonematella subimmersa gen. et comb. nov. (with a reinterpretation of the life history) and the Meiodiscaceae fam. nov. within the Palmariales (Rhodophyta). Phycologia 49:283-300. https://doi.org/10.2216/PH09-43.1
  4. Druehl, L. D., Collins, J. D., Lane, C. E. & Saunders, G. W. 2005. An evaluation of methods used to assess intergeneric hybridization in kelp using Pacific Laminariales (Phaeophyceae). J. Phycol. 41:250-262. https://doi.org/10.1111/j.1529-8817.2005.04143.x
  5. Freshwater, D. W. & Bailey, J. C. 1998. A multigene phylogeny of the Gelidiales including nuclear large-subunit rRNA sequence data. J. Appl. Phycol. 10:229-236. https://doi.org/10.1023/A:1008075429646
  6. Freshwater, D. W., Fredericq, S., Butler, B. S., Hommersand, M. H. & Chase, M. W. 1994. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proc. Natl. Acad. Sci. U. S. A. 91:7281-7285. https://doi.org/10.1073/pnas.91.15.7281
  7. Freshwater, D. W. & Rueness, J. 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33:187-194. https://doi.org/10.2216/i0031-8884-33-3-187.1
  8. Harper, J. T. & Saunders, G. W. 2001a. Molecular systematics of the Florideophyceae (Rhodophyta) using nuclear large and small subunit rDNA sequence data. J. Phycol. 37:1073-1082. https://doi.org/10.1046/j.1529-8817.2001.00160.x
  9. Harper, J. T. & Saunders, G. W. 2001b. The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae, Rhodophyta). Cah. Biol. Mar. 42:25-38.
  10. Hind, K. R. & Saunders, G. W. 2013. A molecular phylogenetic study of the tribe Corallineae (Corallinales, Rhodophyta) with an assessment of genus-level taxonomic features and descriptions of novel genera. J. Phycol. 49:103-114. https://doi.org/10.1111/jpy.12019
  11. Huisman, J. M., Harper, J. T. & Saunders, G. W. 2004. Phylogenetic study of the Nemaliales (Rhodophyta) based on large-subunit ribosomal DNA sequences supports segregation of the Scinaiaceae fam. nov. and resurrection of Dichotomaria Lamarck. Phycol. Res. 52:224-234. https://doi.org/10.1111/j.1440-1835.2004.tb00332.x
  12. Lane, C. E. & Saunders, G. W. 2005. Molecular investigation reveals epi/endophytic extrageneric kelp (Laminariales, Phaeophyceae) gametophytes colonizing Lessoniopsis littoralis thalli. Bot. Mar. 48:426-436.
  13. Le Gall, L. & Saunders, G. W. 2007. A nuclear phylogeny of the Florideophyceae (Rhodophyta) inferred from combined EF2, small subunit and large subunit ribosomal DNA: establishing the new red algal subclass Corallinophycidae. Mol. Phylogenet. Evol. 43:1118-1130. https://doi.org/10.1016/j.ympev.2006.11.012
  14. Maggs, C. A., Verbruggen, H. & De Clerck, O. 2007. Molecular systematics of red algae: building future structures on firm foundations. In Brodie, J. & Lewis, J. (Eds.) Unravelling the Algae: The Past, Present, and Future of Algal Systematics. CRC Press, Boca Raton, FL, pp. 103-121.
  15. Ragan, M. A., Bird, C. J., Rice, E. L., Gutell, R. R., Murphy, C. A. & Singh, R. K. 1994. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc. Natl. Acad. Sci. U. S. A. 91:7276-7280. https://doi.org/10.1073/pnas.91.15.7276
  16. Saunders, G. W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans. R. Soc. B Biol. Sci. 360:1879-1888. https://doi.org/10.1098/rstb.2005.1719
  17. Saunders, G. W. 2008. A DNA barcode examination of the red algal family Dumontiaceae in Canadian waters reveals substantial cryptic species diversity. 1. The foliose Dilsea-Neodilsea complex and Weeksia. Botany 86:773-789. https://doi.org/10.1139/B08-001
  18. Saunders, G. W. & Kraft, G. T. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). 1. Evidence for the Plocamiales ord. nov. Can. J. Bot. 72:1250-1263. https://doi.org/10.1139/b94-153
  19. Saunders, G. W. & McDevit, D. C. 2012. Methods for DNA bar-coding photosynthetic protists emphasizing the macroalgae and diatoms. Methods Mol. Biol. 858:207-222. https://doi.org/10.1007/978-1-61779-591-6_10
  20. Sherwood, A. R. & Presting, G. G. 2007. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. J. Phycol. 43:605-608. https://doi.org/10.1111/j.1529-8817.2007.00341.x
  21. Steane, D. A., McClure, B. A., Clarke, A. E. & Kraft, G. T. 1991. Amplification of the polymorphic 5.8S rRNA gene from selected Australian gigartinalean species (Rhodophyta) by polymerase chain reaction. J. Phycol. 27:758-762. https://doi.org/10.1111/j.0022-3646.1991.00758.x
  22. Tai, V., Lindstrom, S. C. & Saunders, G. W. 2001. Phylogeny of the Dumontiaceae (Gigartinales, Rhodophyta) and associated families based on SSU rDNA and internal transcribed spacer sequence data. J. Phycol. 37:184-196. https://doi.org/10.1046/j.1529-8817.2001.037001184.x
  23. Vis, M. L. & Sheath, R. G. 1999. A molecular investigation of the systematic relationships of Sirodotia species (Batrachospermales, Rhodophyta) in North America. Phycologia 38:261-266. https://doi.org/10.2216/i0031-8884-38-4-261.1
  24. Vis, M. L., Yoon, H. S., Bhattacharya, D. & Lopez-Bautista, J. M. 2010. RedTol: the red algal tree of life. In Mikkelsen, P. (Ed.) Why Study the Tree of Life? The Scientists Speak. Vol. 18. American Paleontologist, Fall 2010, p. 13.
  25. West, J. A., Scott, J. L., West, K. A., Karsten, U., Clayden, S. L. & Saunders, G. W. 2008. Rhodachlya madagascarensis gen. et sp. nov.: a distinct acrochaetioid represents a new order and family (Rhodachlyales ord. nov., Rhodachlyaceae fam. nov.) of the Florideophyceae (Rhodophyta). Phycologia 47:203-212. https://doi.org/10.2216/07-72.1
  26. Wynne, M. J. & Saunders, G. W. 2012. Taxonomic assessment of North American species of the genera Cumathamnion, Delesseria, Membranoptera and Pantoneura (Delesseriaceae, Rhodophyta) using molecular data. Algae 27:155-173. https://doi.org/10.4490/algae.2012.27.3.155
  27. Yoon, H. S., Hackett, J. D. & Bhattacharya, D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. U. S. A. 99:11724-11729. https://doi.org/10.1073/pnas.172234799
  28. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattacharya, D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21:809-818. https://doi.org/10.1093/molbev/msh075
  29. Zuccarello, G. C., Burger, G., West, J. A. & King, R. J. 1999. A mitochondrial marker for red algal intraspecific relationships. Mol. Ecol. 8:1443-1447. https://doi.org/10.1046/j.1365-294x.1999.00710.x

Cited by

  1. Phylogeny, species diversity and biogeographic patterns of the genusTricleocarpa(Galaxauraceae, Rhodophyta) from the Indo-Pacific region, includingT. confertussp. nov. from Taiwan vol.50, pp.4, 2015, https://doi.org/10.1080/09670262.2015.1076892
  2. Diversity of branchedHalymenia(Halymeniales, Rhodophyta) species on the Brazilian coast: molecular and morphological analyses reveal three new species vol.55, pp.4, 2016, https://doi.org/10.2216/15-126.1
  3. Molecular markers from different genomic compartments reveal cryptic diversity within glaucophyte species vol.76, 2014, https://doi.org/10.1016/j.ympev.2014.03.019
  4. The ghost plastid ofChoreocolax polysiphoniae vol.51, pp.2, 2015, https://doi.org/10.1111/jpy.12283
  5. Cryptic species diversity of the red algal genus Callophyllis (Kallymeniaceae, Gigartinales) from Korea vol.37, pp.4, 2014, https://doi.org/10.5141/ecoenv.2014.041
  6. Thorea indica sp. nov. (Thoreales, Rhodophyta) from Uttar Pradesh, India vol.30, pp.4, 2015, https://doi.org/10.4490/algae.2015.30.4.265
  7. Characterization of the putatively introduced red algaAcrochaetium secundatum(Acrochaetiales, Rhodophyta) growing epizoically on the pelage of southern sea otters (Enhydra lutris nereis) vol.32, pp.2, 2016, https://doi.org/10.1111/mms.12275
  8. Molecular analyses and reproductive structure to verify the generic relationships of Hypnea and Calliblepharis (Cystocloniaceae, Gigartinales), with proposal of C. saidana comb. nov. vol.32, pp.2, 2017, https://doi.org/10.4490/algae.2017.32.5.15
  9. Etheliaceae fam. nov. (Gigartinales, Rhodophyta), with a clarification of the generitype ofEtheliaand the addition of six novel species from warm waters vol.51, pp.6, 2015, https://doi.org/10.1111/jpy.12353
  10. What's in a name? Monophyly of genera in the red algae: Rhodophyllis parasitica sp. nov. (Gigartinales, Rhodophyta); a new red algal parasite from New Zealand vol.29, pp.4, 2014, https://doi.org/10.4490/algae.2014.29.4.279
  11. A contaminant DNA barcode sequence reveals a new red algal order, Corynodactylales (Nemaliophycidae, Florideophyceae) vol.95, pp.6, 2017, https://doi.org/10.1139/cjb-2017-0010
  12. Application of multigene phylogenetics and site-stripping to resolve intraordinal relationships in the Rhodymeniales (Rhodophyta) vol.52, pp.3, 2016, https://doi.org/10.1111/jpy.12418
  13. Development and Application of Molecular Markers for Identifying Ulva species in Commercial Pyropia Seafoods vol.47, pp.5, 2014, https://doi.org/10.5657/KFAS.2014.0522
  14. A case for true morphological crypsis: Pacific Dasya anastomosans and Atlantic D. cryptica sp. nov. (Dasyaceae, Rhodophyta) vol.56, pp.4, 2017, https://doi.org/10.2216/16-79.1
  15. Beta diversity of macroalgal communities around St. Eustatius, Dutch Caribbean vol.47, pp.1, 2017, https://doi.org/10.1007/s12526-016-0608-9
  16. A DNA barcode survey ofSchizymenia(Nemastomatales, Rhodophyta) in Australia and British Columbia reveals overlooked diversity includingS. tenuissp. nov.andPredaea borealissp. nov. vol.93, pp.12, 2015, https://doi.org/10.1139/cjb-2015-0122
  17. Notes on the marine algae of the Bermudas. 14. Five additions to the benthic flora, including a distinctive second new species ofCrassitegula(Rhodophyta, Sebdeniales) from the western Atlantic Ocean vol.53, pp.2, 2014, https://doi.org/10.2216/13-211.1
  18. A DNA barcode survey of the red algal genusMazzaellain British Columbia reveals overlooked diversity and new distributional records: descriptions ofM. dewreedeisp. nov. andM. macrocarpasp. nov. vol.92, pp.3, 2014, https://doi.org/10.1139/cjb-2013-0283
  19. Evidence for the introduction of the Asian red algaNeosiphonia japonicaand its introgression withNeosiphonia harveyi(Ceramiales, Rhodophyta) in the Northwest Atlantic vol.24, pp.23, 2015, https://doi.org/10.1111/mec.13429
  20. A molecular evaluation of the Liagoraceae sensu lato (Nemaliales, Rhodophyta) in Bermuda includingLiagora nesophilasp. nov. andYamadaella grassyisp. nov. vol.51, pp.4, 2015, https://doi.org/10.1111/jpy.12306
  21. Rhytimenia,a new genus of red algae based on the rareKallymenia maculata(Kallymeniaceae, Rhodophyta) vol.55, pp.3, 2016, https://doi.org/10.2216/15-130.1
  22. A study of twoAcrochaetiumcomplexes in Canada with distinction ofRhododrewia gen. nov. (Acrochaetiales, Rhodophyta) vol.53, pp.3, 2014, https://doi.org/10.2216/13-224.1
  23. Phylogeny and morphology of the freshwater red algaNemalionopsis shawii(Rhodophyta, Thoreales) from Nepal vol.64, pp.1, 2016, https://doi.org/10.1111/pre.12116
  24. Molecular-assisted alpha taxonomy of the genusRhodymenia(Rhodymeniaceae, Rhodymeniales) from Australia reveals overlooked species diversity vol.51, pp.3, 2016, https://doi.org/10.1080/09670262.2016.1170886
  25. Molecular barcoding confirms the presence of exotic Asian seaweeds (Pachymeniopsis gargiuliandGrateloupia turuturu) in the Cantabrian Sea, Bay of Biscay vol.5, 2017, https://doi.org/10.7717/peerj.3116
  26. Phylogenetic Analyses Support Recognition of Ten New Genera, Ten New Species and 16 New Combinations in the Family Kallymeniaceae (Gigartinales, Rhodophyta) vol.38, pp.2, 2017, https://doi.org/10.7872/crya/v38.iss2.2017.79
  27. Two newly discoveredGrateloupia(Halymeniaceae, Rhodophyta) species on aquaculture rafts on the west coast of South Africa, including the widely introducedGrateloupia turuturu vol.55, pp.6, 2016, https://doi.org/10.2216/15-104.1
  28. The genera Melanothamnus Bornet & Falkenberg and Vertebrata S.F. Gray constitute well-defined clades of the red algal tribe Polysiphonieae (Rhodomelaceae, Ceramiales) vol.52, pp.1, 2017, https://doi.org/10.1080/09670262.2016.1256436
  29. A molecular-assisted investigation of diversity, biogeography and phylogenetic relationships for species of Neoptilota and Ptilota (Wrangeliaceae, Rhodophyta) reported along Canadian coasts vol.56, pp.1, 2017, https://doi.org/10.2216/15-141.1
  30. CrebradomusandDissimularia, new genera in the family Chondrymeniaceae (Gigartinales, Rhodophyta) from the central, southern and western Pacific Ocean vol.53, pp.2, 2014, https://doi.org/10.2216/13-213.1
  31. Entwisleia bella, gen. et sp. nov., a novel marine ‘batrachospermaceous’ red alga from southeastern Tasmania representing a new family and order in the Nemaliophycidae vol.48, pp.4, 2013, https://doi.org/10.1080/09670262.2013.849359
  32. Key Kamchatkan collections provide new taxonomic and distributional insights for reportedly pan–North Pacific species of Rhodymeniophycidae (Rhodophyta) vol.56, pp.3, 2017, https://doi.org/10.2216/15-145.1
  33. A molecular phylogenetic and DNA barcode assessment of the tribe Pterosiphonieae (Ceramiales, Rhodophyta) emphasizing the Northeast Pacific vol.94, pp.10, 2016, https://doi.org/10.1139/cjb-2016-0083
  34. Multigene analyses resolve early diverging lineages in the Rhodymeniophycidae (Florideophyceae, Rhodophyta) vol.52, pp.4, 2016, https://doi.org/10.1111/jpy.12426
  35. There is more to maerl than meets the eye: DNA barcoding reveals a new species in Britain, Lithothamnion erinaceum sp. nov. (Hapalidiales, Rhodophyta) vol.52, pp.2, 2017, https://doi.org/10.1080/09670262.2016.1269953
  36. PCR fishing for red endophytes in British Columbia Kallymeniaceae (Gigartinales, Florideophyceae) uncovers the species-rich Kallymenicola gen. nov. (Palmariales, Nemaliophycidae) vol.53, pp.3, 2017, https://doi.org/10.1111/jpy.12522
  37. Fredericqia deveauniensis,gen. et sp. nov. (Phyllophoraceae, Rhodophyta), a New Cryptogenic Species vol.34, pp.3, 2013, https://doi.org/10.7872/crya.v34.iss2.2013.273
  38. New Record of the non-Native SeaweedGracilaria parvisporain Baja California - A Note on Vergara-Rodarteet al.(2016) vol.37, pp.4, 2016, https://doi.org/10.7872/crya/v37.iss4.2016.257
  39. Mitochondrial cox1 and cob sequence diversities in Gelidium vagum (Gelidiales, Rhodophyta) in Korea vol.29, pp.1, 2014, https://doi.org/10.4490/algae.2014.29.1.015
  40. Neoharaldiophyllum, a new genus of Delesseriaceae (Rhodophyta) based on carposporophyte development and molecular data vol.60, pp.5, 2017, https://doi.org/10.1515/bot-2017-0003
  41. Nocturamagen. nov.,Nothocladuss. lat. and other taxonomic novelties resulting from the further resolution of paraphyly in Australasian members ofBatrachospermum(Batrachospermales, Rhodophyta) vol.52, pp.3, 2016, https://doi.org/10.1111/jpy.12401
  42. A re-examination of the genusLeptofauchea(Faucheaceae, Rhodymeniales) with clarification of species in Australia and the northwest Pacific vol.54, pp.4, 2015, https://doi.org/10.2216/14-110.1
  43. Multigene phylogeny of the red algal subclass Nemaliophycidae vol.94, 2016, https://doi.org/10.1016/j.ympev.2015.10.015
  44. DNA barcoding reveals high diversity in the Gelidiales of the Brazilian southeast coast vol.58, pp.4, 2015, https://doi.org/10.1515/bot-2014-0069
  45. Population genetic analyses are consistent with the introduction ofCeramium secundatum(Ceramiaceae, Rhodophyta) to Narragansett Bay, Rhode Island, USA vol.5, pp.21, 2015, https://doi.org/10.1002/ece3.1754
  46. Endemic or introduced? Phylogeography ofAsparagopsis(Florideophyceae) in Australia reveals multiple introductions and a new mitochondrial lineage vol.52, pp.1, 2016, https://doi.org/10.1111/jpy.12373
  47. The monospecific genusMeredithia(Kallymeniaceae, Gigartinales) is species rich and geographically widespread with species from temperate Atlantic, Pacific, and Indian Oceans vol.50, pp.1, 2014, https://doi.org/10.1111/jpy.12149
  48. Detecting the non-nativeGrateloupia turuturu(Halymeniales, Rhodophyta) in southern Brazil vol.54, pp.5, 2015, https://doi.org/10.2216/15-25.1
  49. The complete nuclear ribosomal DNA (nrDNA) cistron sequence of Pyropia yezoensis (Bangiales, Rhodophyta) vol.28, pp.1, 2016, https://doi.org/10.1007/s10811-015-0522-8
  50. Three new cryptogenic species in the tribes Polysiphonieae and Streblocladieae (Rhodomelaceae, Rhodophyta) vol.56, pp.6, 2017, https://doi.org/10.2216/17-17.1
  51. Long distance kelp rafting impacts seaweed biogeography in the Northeast Pacific: the kelp conveyor hypothesis vol.50, pp.6, 2014, https://doi.org/10.1111/jpy.12237
  52. A new monotypic family for the enigmatic crustose red algaPlagiospora gracilis vol.182, pp.1, 2016, https://doi.org/10.1111/boj.12450
  53. Palmophyllum crassum, a New Record of an Ancient Species in Green Algae from Korea vol.35, pp.3, 2017, https://doi.org/10.11626/KJEB.2017.35.3.319
  54. (Batrachospermales, Rhodophyta) vol.54, pp.1, 2017, https://doi.org/10.1111/jpy.12603
  55. A rosette by any other name: species diversity in the Bangiales (Rhodophyta) along the South African coast vol.53, pp.1, 2018, https://doi.org/10.1080/09670262.2017.1376256
  56. Mitochondrial DNA sequence data reveal the origins of postglacial marine macroalgal flora in the Northwest Atlantic vol.589, pp.1616-1599, 2018, https://doi.org/10.3354/meps12496
  57. sp. nov. (Gigartinales, Rhodophyta) from the Israeli Levant Mediterranean Sea vol.39, pp.1, 2018, https://doi.org/10.7872/crya/v39.iss1.2018.109
  58. vol.39, pp.4, 2018, https://doi.org/10.7872/crya/v39.iss4.2018.431
  59. Taxonomic notes on the genus Alsidium C. Agardh, including the merging of Bryothamnion Kützing (Rhodomelaceae) vol.33, pp.3, 2018, https://doi.org/10.4490/algae.2018.33.6.25
  60. Genetic discontinuity of Digenea (Rhodomelaceae, Rhodophyta) from Mexico supports recognition of two new species, D. mexicana and D. rafaelii vol.33, pp.3, 2018, https://doi.org/10.4490/algae.2018.33.8.20
  61. Novel species of the oomycete Olpidiopsis potentially threaten European red algal cultivation pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1641-9
  62. A molecular assessment of species diversity and generic boundaries in the red algal tribes Polysiphonieae and Streblocladieae (Rhodomelaceae, Rhodophyta) in Canada pp.1469-4433, 2019, https://doi.org/10.1080/09670262.2018.1483531
  63. Widely distributed red algae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure pp.00223646, 2018, https://doi.org/10.1111/jpy.12778
  64. Alternate life history phases of a common seaweed have distinct microbial surface communities vol.27, pp.17, 2018, https://doi.org/10.1111/mec.14815
  65. Detection of Pythium porphyrae infecting Philippine Pyropia acanthophora based on morphology and nuclear rRNA internal transcribed spacer sequences pp.1610-739X, 2018, https://doi.org/10.1007/s10327-018-0815-2
  66. (Rhodomelaceae, Rhodophyta) and reveal a strong phylogeographic structure in Australia vol.57, pp.5, 2018, https://doi.org/10.2216/18-36.1
  67. (Collins & M. Howe) comb. nov. vol.53, pp.3, 2018, https://doi.org/10.1080/09670262.2018.1452297
  68. . vol.57, pp.3, 2018, https://doi.org/10.2216/17-110.1
  69. Assessment of the order Rhodymeniales (Rhodophyta) from British Columbia using an integrative taxonomic approach reveals overlooked and cryptic species diversity vol.96, pp.6, 2018, https://doi.org/10.1139/cjb-2017-0143
  70. Intensive land-based production of red and green macroalgae for human consumption in the Pacific Northwest: an evaluation of seasonal growth, yield, nutritional composition, and contaminant levels vol.33, pp.1, 2018, https://doi.org/10.4490/algae.2018.33.2.21
  71. A genetic diversity assessment of Halymenia malaysiana (Halymeniaceae, Rhodophyta) from Malaysia and the Philippines based on COI-5P and rbcL sequences pp.1573-5176, 2018, https://doi.org/10.1007/s10811-018-1484-4
  72. A risk assessment of aquarium trade introductions of seaweed in European waters vol.20, pp.5, 2018, https://doi.org/10.1007/s10530-017-1618-7
  73. . (Ceramiales, Rhodophyta) vol.58, pp.1, 2019, https://doi.org/10.1080/00318884.2018.1517531
  74. sp. nov. vol.97, pp.2, 2019, https://doi.org/10.1139/cjb-2018-0138
  75. Collections from the mesophytic zone off Bermuda reveal three species of Kallymeniaceae (Gigartinales, Rhodophyta) in genera with transoceanic distributions pp.00223646, 2019, https://doi.org/10.1111/jpy.12828
  76. Mychodea and the Mychodeaceae (Gigartinales, Rhodophyta) revisited: molecular analyses shed light on interspecies relationships in Australia’s largest endemic algal genus and family vol.30, pp.3, 2013, https://doi.org/10.1071/sb16058
  77. Beneath the hairy look: the hidden reproductive diversity of the Gibsmithia hawaiiensis complex (Dumontiaceae, Rhodophyta) vol.53, pp.6, 2013, https://doi.org/10.1111/jpy.12593
  78. Guidelines for DNA barcoding of coralline algae, focusing on Lithophylloideae (Corallinales) from Brazil vol.61, pp.2, 2013, https://doi.org/10.1515/bot-2017-0040
  79. Species delimitation methods reveal cryptic diversity in the Hypnea cornuta complex (Cystocloniaceae, Rhodophyta) vol.54, pp.2, 2019, https://doi.org/10.1080/09670262.2018.1522454
  80. Trans‐Arctic speciation of Florideophyceae (Rhodophyta) since the opening of the Bering Strait, with consideration of the “species pump” hypothesis vol.46, pp.4, 2019, https://doi.org/10.1111/jbi.13504
  81. Phylogenetic relationships of Pakistan Gelidium (Gelidiales, Rhodophyta) species with recognition of Gelidium pakistanicum stat. nov. vol.62, pp.2, 2013, https://doi.org/10.1515/bot-2018-0121
  82. DNA barcoding of the marine macroalgae from Nome, Alaska (Northern Bering Sea) reveals many trans-Arctic species vol.42, pp.5, 2013, https://doi.org/10.1007/s00300-019-02478-4
  83. Chloroplast and mitochondrial genomes of Balbiania investiens (Balbianiales, Nemaliophycidae) vol.58, pp.3, 2013, https://doi.org/10.1080/00318884.2019.1573349
  84. The phylogeographic history of amphitropical Callophyllis variegata (Florideophyceae, Rhodophyta) in the Pacific Ocean vol.34, pp.2, 2019, https://doi.org/10.4490/algae.2019.34.5.26
  85. A taxonomic review of the genus Hypnea (Gigartinales, Rhodophyta) in Brazil based on DNA barcode and morphology vol.42, pp.3, 2013, https://doi.org/10.1007/s40415-019-00544-z
  86. Alsidium oliveiranum sp. nov. (Rhodomelaceae, Rhodophyta), an overlooked species from the southwestern Atlantic based on morphology and DNA sequence data vol.34, pp.3, 2019, https://doi.org/10.4490/algae.2019.34.8.26
  87. New species of Galene and Howella gen. nov. (Halymeniaceae, Rhodophyta) from the mesophotic zone off Bermuda vol.58, pp.6, 2013, https://doi.org/10.1080/00318884.2019.1661158
  88. Preliminary DNA Barcode Report on the Marine Red Algae (Rhodophyta) from the British Overseas Territory of Tristan da Cunha vol.40, pp.10, 2013, https://doi.org/10.5252/cryptogamie-algologie2019v40a10
  89. A DNA barcode survey of marine macroalgae from Bergen (Norway) vol.15, pp.10, 2013, https://doi.org/10.1080/17451000.2019.1699659
  90. Contrasting patterns of genetic structure and phylogeography in the marine agarophytes Gelidiophycus divaricatus and G. freshwateri (Gelidiales, Rhodophyta) from East Asia vol.55, pp.6, 2013, https://doi.org/10.1111/jpy.12910
  91. Reassessment of the genus Lophurella (Rhodomelaceae, Rhodophyta) from Australia and New Zealand reveals four cryptic species vol.55, pp.1, 2013, https://doi.org/10.1080/09670262.2019.1659419
  92. Complete Mitochondrial Genomes Reveal Population-Level Patterns in the Widespread Red Alga Gelidiella fanii (Gelidiales, Rhodophyta) vol.7, pp.None, 2013, https://doi.org/10.3389/fmars.2020.583957
  93. Reappraising plastid markers of the red algae for phylogenetic community ecology in the genomic era vol.10, pp.3, 2013, https://doi.org/10.1002/ece3.5984
  94. Study of the phylogeny and distribution of Pterocladiella (Pterocladiaceae, Rhodophyta) from China vol.59, pp.2, 2013, https://doi.org/10.1080/00318884.2020.1717909
  95. Two new species of Solieriaceae (Rhodophyta, Gigartinales) from the euphotic and mesophotic zones off Bermuda, Meristotheca odontoloma and Tepoztequiella muriamans vol.59, pp.2, 2020, https://doi.org/10.1080/00318884.2020.1719326
  96. Schizymenia jonssonii sp. nov. (Nemastomatales, Rhodophyta): a relict or an introduction into the North Atlantic after the last glacial maximum? vol.56, pp.2, 2013, https://doi.org/10.1111/jpy.12957
  97. Commanderella gen. nov. and new insights into foliose Kallymeniaceae (Rhodophyta) from the Russian Pacific coast based on molecular studies vol.59, pp.3, 2013, https://doi.org/10.1080/00318884.2020.1732150
  98. LC-ESI-QTOF-MS/MS Characterization of Seaweed Phenolics and Their Antioxidant Potential vol.18, pp.6, 2013, https://doi.org/10.3390/md18060331
  99. The current state of DNA barcoding of macroalgae in the Mediterranean Sea: presently lacking but urgently required vol.63, pp.3, 2020, https://doi.org/10.1515/bot-2019-0041
  100. The current state of DNA barcoding of macroalgae in the Mediterranean Sea: presently lacking but urgently required vol.63, pp.3, 2020, https://doi.org/10.1515/bot-2019-0041
  101. Molecular Assessment of the Tribes Streblocladieae and Polysiphonieae (Rhodomelaceae, Rhodophyta) in the British Isles Reveals New Records and Species that Require Taxonomic Revision vol.41, pp.8, 2020, https://doi.org/10.5252/cryptogamie-algologie2020v41a8
  102. A re-evaluation of Palmaria (Palmariaceae, Rhodophyta) in the North-West Pacific vol.55, pp.3, 2013, https://doi.org/10.1080/09670262.2020.1714081
  103. Molecular survey of the red algal family Rhodomelaceae (Ceramiales, Rhodophyta) in Australia reveals new introduced species vol.32, pp.4, 2020, https://doi.org/10.1007/s10811-019-01932-4
  104. Suitability of DNA Sequencing Tools for Identifying Edible Seaweeds Sold in the United States vol.68, pp.52, 2013, https://doi.org/10.1021/acs.jafc.0c03734
  105. Phylogeny and morphology of Nemalionopsis shawii (Thoreales, Rhodophyta), a new generic record from mainland China vol.69, pp.1, 2013, https://doi.org/10.1111/pre.12444
  106. Taxonomic investigation of Ralfsia-like (Ralfsiales, Phaeophyceae) taxa in the North Atlantic Ocean based on molecular and morphological data, with descriptions of Pseudoralfsiaceae fam. nov., Pseudor vol.56, pp.1, 2013, https://doi.org/10.1080/09670262.2020.1753245
  107. Morphological and molecular reassessment of three species of the genus Besa (Phyllophoraceae, Rhodophyta) from the Northwest Pacific vol.56, pp.1, 2013, https://doi.org/10.1080/09670262.2020.1765025
  108. Devaleraea titlyanoviorum sp. nov. (Palmariaceae, Rhodophyta) from the Russian coast of the northwestern Pacific Ocean vol.60, pp.1, 2013, https://doi.org/10.1080/00318884.2020.1842986
  109. Molecular data reveals two new species of Hypnea (Cystocloniaceae, Rhodophyta) from India: Hypnea indica sp. nov. and Hypnea bullata sp. nov. vol.64, pp.2, 2013, https://doi.org/10.1515/bot-2020-0069
  110. Ethelia hawaiiensis (Etheliaceae, Rhodophyta), a New Mesophotic Marine Alga from Manawai (Pearl and Hermes Atoll), Papahānaumokuākea Marine National Monument, Hawai‘i1 vol.75, pp.2, 2021, https://doi.org/10.2984/75.2.6
  111. On the nomenclatural reinstatement and lectotypification of Spyridia americana Durant (1850) vol.64, pp.3, 2013, https://doi.org/10.1515/bot-2021-0004
  112. Revision of the Genus Sirodotia Kylin (Batrachospermales, Rhodophyta) with Description of Four New Species vol.42, pp.8, 2013, https://doi.org/10.5252/cryptogamie-algologie2021v42a8
  113. Lithothamnion (Hapalidiales, Rhodophyta) in the changing Arctic and Subarctic: DNA sequencing of type and recent specimens provides a systematics foundation* vol.56, pp.4, 2021, https://doi.org/10.1080/09670262.2021.1880643
  114. Taxonomic Revision of Hook-Forming Acrosorium (Delesseriaceae, Rhodophyta) from the Northwestern Pacific Based on Morphology and Molecular Data vol.10, pp.11, 2021, https://doi.org/10.3390/plants10112269
  115. Optimization of primer and polymerase chain reaction conditions to amplify COI locus for identification of Purnajiwa (Euchresta horsfieldii (Lesch.) Benn.) collected from Bedugul, Bali vol.913, pp.1, 2013, https://doi.org/10.1088/1755-1315/913/1/012069
  116. The habitat-modifying red alga Ramicrusta on Pacific reefs: A new generic record for the Tropical Northwestern Pacific and the description of four new species from Guam vol.16, pp.11, 2013, https://doi.org/10.1371/journal.pone.0259336
  117. Resurrection of Plocamium pusillum Sonder (Plocamiaceae, Rhodophyta) from Australia vol.42, pp.14, 2021, https://doi.org/10.5252/cryptogamie-algologie2021v42a14
  118. Taxonomic revision of the Peyssonneliales (Rhodophyta): Circumscribing the authentic Peyssonnelia clade and proposing four new genera and seven new species vol.57, pp.6, 2013, https://doi.org/10.1111/jpy.13207