DOI QR코드

DOI QR Code

NDE of the Internal Hole Defect of Dental Composite Restoration Using Infrared Lock-In Thermography

위상잠금 열화상기법을 이용한 치과용 복합레진 수복재의 내부 홀 결함에 대한 비파괴평가

  • 구자국 (한양대학교 대학원 기계공학과) ;
  • 최낙삼 (한양대학교 기계공학과)
  • Received : 2012.12.07
  • Accepted : 2013.02.05
  • Published : 2013.02.28

Abstract

The purpose of this study was to detect the pin hole defect of dental composite restoration using lock-in thermography method. Amplitude and phase images of the composite resin specimens were analyzed according to the lock-in frequency and the diameter of defect area. Through the amplitude image analysis, at lock-in frequency of 0.05 Hz, defect diameters 2-5 mm exhibited the highest amplitude contrast value between defective area and sound area. The lock-in frequency range of 0.3-0.5 Hz provided good phase angle contrast for the defect area. At lock-in frequency range of 0.5 Hz, defect diameter of 5 mm exhibited the highest phase contrast value. It is concluded that the infrared lock-in thermography method verified the effectiveness for detecting the pin hole defect of dental composite restoration.

위상잠금 적외선열화상기법을 이용하여 치과용 복합레진 수복재의 내부 홀 결함 크기에 따른 검출 가능성을 연구하였다 위상잠금 주파수 조건을 다르게 하며 진폭과 위상영상을 분석하였다. 진폭 이미지 분석을 통해 직경 2 mm 이상의 결함 검출이 가능함을 알았으며 0.05 Hz 부근에서 결함부의 구별이 뚜렷하고 선명한 이미지를 획득할 수 있었다. 진폭 대비차는 결함부의 직경 크기에 비례하였다. 위상 이미지 분석 결과 0.3-0.5 Hz 부근에서 최적의 대조 영상을 보였으며 0.006 Hz 에서는 반대 명암의 뚜렷한 이미지를 얻을 수 있었다. 진폭 분석보다 위상 분석에서 결함부 크기가 작은 시편의 검출 가능성이 더 높았다.

Keywords

References

  1. J. R. Bausch, K. de Lange and C. L. Davidson, "Clinical significance of polymerization shrinkage of composite resins," J. Prosthet Dent, Vol. 48, issue 1, pp. 59-67 (1982) https://doi.org/10.1016/0022-3913(82)90048-8
  2. C. J. Kleverlaan and A. J. Feilzer, "Polymerization shrinkage and contraction stress of dental resin composites," Dent Mater, Vol. 21, issue 12, pp. 1150-1157 (2005). https://doi.org/10.1016/j.dental.2005.02.004
  3. N. Ilie, K. H. Kunzelmann and R. Hickel, "Evaluation of micro-tensile bond strengths of composite materials in comparison to their polymerization shrinkage," Dent Mater, Vol. 22, issue 7, pp. 593-601 (2006) https://doi.org/10.1016/j.dental.2005.05.014
  4. G. Busse, D. Wu and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," J. Appl. Phys., Vol. 71, No. 8, pp. 3962-3965 (1992) https://doi.org/10.1063/1.351366
  5. J. Rantala, D. Wu and G. Busse, "Amplitude modulated lock-in vibrothermography for NDE of polymers and composites," Research in Nondestructive Evaluation. Vol. 7(4), pp. 215- 228 (1996) https://doi.org/10.1080/09349849609409580
  6. I. Krejci, M. Besek and F. Lutz, "Clinical and SEM study of Tetric resin composite in posterior teeth: 12-month results," American Journal of Dentistry, Vol. 7, No. 1, pp. 27-30 (1999)
  7. A. K. Bedran de Castro, L. A. Pimenta, C. M. Amaral and G. M. Ambrosano, "Evaluation of microleakage in cervical margins of various posterior restorative systems," Journal of Esthetic And Restorative Dentistry, Vol. 14, pp. 107-114 (2002) https://doi.org/10.1111/j.1708-8240.2002.tb00159.x
  8. J. U. Gu and N. S. Choi, "Evaluation of delamination of dental composite restoration using infrared lock-in thermography," Journal of the Korean Society for Composite Materials, Vol. 25(6), pp. 236-240 (2012) https://doi.org/10.7234/kscm.2012.25.6.236
  9. B. Otwin, W. Wilhelm and L. Martin, "Lockin Thermography," Springer-Verlag Berlin Heidelberg, pp. 14-26 (2010)
  10. X. Maldague, "Theory and Practice of Infrared Thermography for Nondestructive Testing," John Wiley & Sons, Inc., New York (2001)