DOI QR코드

DOI QR Code

지구 재진입체의 특성에 따른 재진입사례 및 생존특성 분석

Analyses for Re-entry Event and Survival characteristics according to Characters of Re-entering Space Objects

  • 정순우 (부산대학교 항공우주공학과) ;
  • 민찬오 (부산대학교 항공우주공학과) ;
  • 이대우 (부산대학교 항공우주공학과) ;
  • 조겸래 (부산대학교 항공우주공학과)
  • 투고 : 2013.01.22
  • 심사 : 2013.02.28
  • 발행 : 2013.02.28

초록

1957년 10월 4일 인류최초의 위성 스푸트니크1호가 발사된 이래로 지구저궤도에서 대기권으로 재진입하는 물체의 양은 지속적으로 증가해왔다. 대부분의 재진입체들은 공력가열에 의해 타버려 생존하기 어렵다. 그러나 단 하나의 물체라도 지표면으로 떨어질 경우 인명 및 재산피해를 유발할 수 있다. 우주활동의 부산물로 발생하는 폐기위성, 로켓부스터, 압력탱크, 폐기우주정거장 등 지구에 재진입하는 물체는 꾸준히 늘어왔다. 대부분의 재진입체는 고도 50km~80km에서 소각되고 10%~40% 가량이 살아남아 지상으로 추락한다. 따라서 본 논문은 다양한 사례를 종합하여 재진입체의 생존특성을 분석하였다.

The amount of object which reenter the Earth's atmosphere has been increasing after the Sputnik I launch in October 1957. Most of reentry objects were incinerated by aerodynamic heating so they hardly survive. But they may incur casualties and widespread property damages if they survive and fall to surface. The amount of reentry objects, such as Satellite, Rocket Booster, Pressure Tank, ISS shows continued growth as byproduct of space activities. Most of the re-entry objects are incinerated at between altitude of 50km~80km and 10%~40% of the objects are surviving and falling to the ground. Therefore, this paper try to piece together the reentry event and analysis the survival characteristics of re-entry object.

키워드

참고문헌

  1. Walker. R., Martin. C., Stokes. H., Wilkinson. J., Sdunnus. H, Hauptmann. S, Beltrami. P., Klinkrad. H, "Update of the ESA Space Debris Mitigation Handbook", Executive summary, 2002.
  2. S.C. Lee, B.K. Park, B.Y. Kim, T.S. Ahn, "A Study on the Final Orbit Raising of GEO Satellite," vol. 29, no. 4, pp. 86-92, June 2001.
  3. Heiner Klinkrad, "Space Debris-Models and Risk Analysis," Praxis Publishing, Chichester Uk, pp. 241-288, 2006,
  4. Lydon B. johnson Space Center, NASA, Columbia Crew Survival Investigation Report, NASA/SP -2008-565
  5. Russell P. Patera, William H.Ailor, "The Realities of Reentry Disposal", Advances in Astronautical Sciences, Vol. 99, pp. 1059-1071, 1998
  6. Lyndon B. Johnson Space Center, NASA Orbital Debris Program Office, Re-entry and Risk Assessment for the NASA Upper Atmosphere Research Satellite (UARS)
  7. C. Portelli, L. Salotti, L. Anselmo, T. Lips, A. Tramutola, "BeppoSAX equatorial uncontrolled re-entry," Advances in Space Research, Volume 34, Issue 5, pp. 1029-1037, 2003
  8. Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Reynolds, Robert C.; Johnson, Nicholas L., "Spacecraft Orbital Debris Reentry: Aerothermal Analysis," Proceedings of the Eighth Annual Thermal and Fluids Analysis Workshop: Spacecraft Analysis and Design; 10.1-10.14; (NASA-CP -3359), 1997
  9. Anselmo, Luciano; Pardini, Carmen, "The management of the MIR reentry in Italy", "In: Proceedings of the international workshop "MIR deorbit," pp. 83 - 90, 2002
  10. Tobias Lips, Bent Fritsche, "A comparison of commonly used re-entry analysis tools," Acta Astronautica, Volume 57, 2005, Issue 2-8, pp. 312-323 https://doi.org/10.1016/j.actaastro.2005.03.010
  11. R. L. Kelley (Jacobs ESCG), N. M. Hill (MEI Technologies ESCG), W. C. Rochelle (Jacobs ESCG), N. L. Johnson (NASA JSC), T. Lips (HTG), COMPARISON of ORSAT and SCARAB Reentry Analysis Tools for a Generic Satellite Test Case, PEDAS1-0021-10, 38th COSPAR Scientific Assembly, Bremen Germany, July 18-25, 2010