DOI QR코드

DOI QR Code

한반도 초염기성 포획암의 산소동위원소 비율

Oxygen Isotopic Ratios for Ultramafic Xenoliths from the Korean Peninsula

  • 이정아 (서울교육대학교 창의융합교육연구센터) ;
  • 김규한 (이화여자대학교 과학교육과) ;
  • 이종익 (극지연구소 극지지구시스템연구부) ;
  • 추미경 (이화여자대학교 과학교육과)
  • Lee, Jeong-A (Research Center for Creativity and Convergence Education, Seoul National University of Education) ;
  • Kim, Kyuhan (Department of Science Education, Ewha Womans University) ;
  • Lee, Jong-Ik (Division of Polar Earth System-Science, Korea Polar Research Institute) ;
  • Choo, Mikyung (Department of Science Education, Ewha Womans University)
  • 투고 : 2012.11.27
  • 심사 : 2013.01.09
  • 발행 : 2013.02.28

초록

한반도에서 산출되는 초염기성 맨틀포획암의 지화학적 특징과 평형 온도와 압력 조건을 계산하고, 산소동위원소비를 분석하였다. 연구 결과 (1) 한반도 맨틀포획암은 전형적인 초염기성 포획암(MgO: 49.12-50.95 wt.%, Mg값: 90.1-92.2)으로 구성되어 있다. (2) 한반도 맨틀포획암의 평형온도는 $854-1016^{\circ}C$이고, 압력은 4.6-24.4 kbar로 얻어졌다. (3) 맨틀포획암을 구성하는 감람석의 산소동위원소비(${\delta}^{18}O_{ol}$)는 5.06-5.51‰의 균질한 값으로 N-MORB와 상부 맨틀 감람석의 값(${\delta}^{18}O$: $5.2{\pm}0.2$‰)과 유사하다. 그러나 백두산과 제주도의 맨틀포획암을 구성하는 감람석의 산소동위원비는 각각 5.07-5.51‰과 5.07-5.45‰로 상대적으로 넓은 범위의 ${\delta}^{18}O$ 값을 갖고 있다. 이 결과를 바탕으로, 이 연구에서는 백두산 맨틀포획암의 높은 ${\delta}^{18}O$가 맨틀포획암 물질에 재순환된 퇴적물원 EM2 물질의 혼입 때문일 수 있다는 가능성을 제안하였다.

This study examined the geochemical characteristics, equilibrium temperature and pressure conditions, and oxygen isotopic ratios of mantle xenoliths from the various geological sites of the Korean peninsula. The results are as follows: (1) The ultramafic xenoliths from the Korean peninsula mainly consist of typical high magnesium olivine (MgO : 49.12-50.95 wt.%, Mg value: 90.1-92.2), corresponding to worldwide Cenozoic ultramafic xenoliths in chemical compositions. (2) The pressure-temperature conditions of ultramafic xenoliths in the Korean peninsula are from 854 to $1016^{\circ}C$ and 4.6 to 24.4 kbar. (3) The oxygen isotopic ratios (${\delta}^{18}O$) for olivines in ultramafic xenoliths range from 5.06‰ to 5.51‰, which are relatively uniform oxygen isotopic values and overlapped by the values of N-MORB and upper mantle peridotite (${\delta}^{18}O$: $5.2{\pm}0.2$‰). However, olivines of the ultramafic xenoliths from the Baegdusan and Chejudo have a relatively wide ${\delta}^{18}O$ values ranging from 5.07 to 5.51‰ and 5.07 to 5.45‰, respectively. Based on the results, this study suggests that the high ${\delta}^{18}O$ signature of the Baegdusan xenoliths give a hint that ~5% of the oxygen in typical EM2 sources originally derived from recycled sediments.

키워드

참고문헌

  1. Adams, G.E. and Bishop, F.C., 1986, The olivineclinopyroxene geobarometer: Experimental results in the $CaO-FeO-MgO-SiO_2$ system. Contributions to Mineralogy and Petrology, 94, 230-237. https://doi.org/10.1007/BF00592939
  2. Ahn, I.S., Lee, J.I., Kusakabe, M., and Choi B.-G., 2012, Oxygen isotope measurements of terrestrial silicates using a $CO_2-laser$ $BrF_5$ fluorination technique and the slope of terrestrial fractionation line. Geosciences Journal, 16, 7-16. https://doi.org/10.1007/s12303-012-0011-x
  3. Arai, S., Kida, M., and Abe, N., 2001, Petrology of peridotite xenoliths in alkali basalt (11Ma) from Boun, Korea: An insight into the upper mantle beneath the East Asian continental margin. Journal of Mineralogical and Petrological Sciences, 96, 89-99. https://doi.org/10.2465/jmps.96.89
  4. Arai, S., Abe, N., and Ishimaru, S., 2007, Mantle peridotites from the Western Pacific. Gondwana Research, 11, 180-199. https://doi.org/10.1016/j.gr.2006.04.004
  5. Ballhaus, C., Berry, R.G., and Green, D.H., 1991, High pressure experimental calibration of the olivineorthopyroxene-spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107, 27-40. https://doi.org/10.1007/BF00311183
  6. Basu, A.R., Junwen, W., Wankang, H., and Guanghong, X., 1991, Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters, 105, 149-169. https://doi.org/10.1016/0012-821X(91)90127-4
  7. Bertrand, P. and Mercier, J.C., 1985, The mutual solubility of coexisting ortho- and clinopyroxene: Toward and absolute geothermometer for the natural system? Earth and Planetary Science Letters, 76, 109-122. https://doi.org/10.1016/0012-821X(85)90152-9
  8. Brey, G.P. and Köhler, T., 1990, Geothermometry in four phase lherzolite II, New thermometers and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1358-1378.
  9. Chang, S.-J. and Baag, C.-E., 2007, Moho depth and crustal Vp/Vs variation in southern Korea from teleseismic receiver functions: Implication for tectonic affinity between the Korean peninsula and China. Bulletin of the Seismological Society of America, 97, 1621-1631. https://doi.org/10.1785/0120050264
  10. Chen, Y., Zhang, Y., Graham, D., Su, S., and Deng, J., 2007, Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 96, 108-126. https://doi.org/10.1016/j.lithos.2006.09.015
  11. Choi, S.H., Jaw, Y., and Lee, H., 2001, Geothermal gradient of the upper mantle beneath Jeju Island, Korea: Evidence from mantle xenoliths. The Island Arc, 10, 175-193. https://doi.org/10.1046/j.1440-1738.2001.00317.x
  12. Choi, S.H., Lee, J.I., Park, C.-H., and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju island, Korea. The Island Arc, 11, 221-235. https://doi.org/10.1046/j.1440-1738.2002.00367.x
  13. Choi, S.H. and Kwon, S.-T., 2005, Mineral chemistry of spinel peridotite xenoliths from Baengnyeong Island, South Korea, and its implications for the paleogeotherm of the uppermost mantle. The Island Arc, 14, 236-253. https://doi.org/10.1111/j.1440-1738.2005.00469.x
  14. Choi, S.H., Kwon, S.-T., Mukasa, S.B., and Sagong, H., 2005, Sr-Nd-Pb isotope and trace element systematic of mantle xenoliths from Late Cenozoic alkaline lavas. South Korea. Chemical Geology, 221, 40-64. https://doi.org/10.1016/j.chemgeo.2005.04.008
  15. Chough, S.K., Kwon, S., Ree, J., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth-Science Reviews, 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  16. Cohen, R.S., O'Nions, R.K., and Dawson, J.B., 1984, Isotope geochemistry of xenoliths form East Africa: Implications for development of mantle reservoirs and their interaction. Earth and Planetary Science Letters, 68, 209-220. https://doi.org/10.1016/0012-821X(84)90153-5
  17. Eiler, J.M., 2001, Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Valley, J.W. and Cole, D.R., (eds.), Stable isotope geochemistry: Reviews in Mineralogy and Geochemistry, Volume 43. Washington, D.C., Mineralogical Society of America, USA, 319-364.
  18. Eiler, J.M., Farley, K.A., Valley, J.W., Stolper, E.M., Hauri, E.H., and Craig, H., 1995, Oxygen isotope evidence against bulk recycled sediment in the mantle sources of Pitcairn Island lavas. Nature, 377, 14, 138-141.
  19. Eiler, J.M., Mclnnes, B., Valley, J.W., Graham, C.M., and Stolper, E.M., 1998, Oxygen isotope evidence for slabderived fluids in the sub-arc mantle. Nature, 393, 777-781. https://doi.org/10.1038/31679
  20. Eiler, J.M., Rarley, K.A., Valley, J.W., Hauri, E., Craig, H., Hart, S.R., and Stolper, E.M., 1997, Oxygen isotope variations in ocean island basalt phenocrysts. Geochimica et Cosmochimica Acta, 61, 2281-2293. https://doi.org/10.1016/S0016-7037(97)00075-6
  21. Gurenko, A.A., Bindeman, I.N., and Chauyssidon, C., 2011, Oxygen isotope heterogeneity of the mantle beneath the Canary islands: Insights from olivine phenocrysts. Contributions to Mineralogy and Petrology, 162, 349-363. https://doi.org/10.1007/s00410-010-0600-5
  22. Han, U. and Keehm, Y., 1997, Thermal stress distributions within the lithosphere of East Sea of Korea. Journal of Korean Earth Science Society, 18, 176-182.
  23. Harmon, R.S. and Hoefs, J., 1995, Oxygen isotope heterogeneity of the mantle deduced from global $^{18}O$ systematic of basalts from different geotectonic settings. Contributions to Mineralogy and Petrology, 120, 95-114. https://doi.org/10.1007/BF00311010
  24. Hart, S.R., 1988, Heterogeneous mantle domains: Signatures, genesis, and mixing chronologies. Earth and Planetary Science Letters, 90, 273-296. https://doi.org/10.1016/0012-821X(88)90131-8
  25. Hart, S.R., Hauri, E.H., Oschmann, L.A., and Whitehead, J.A., 1992, Mantle plumes and entrainment:Isotopic evidence, Science, 256, 517-520. https://doi.org/10.1126/science.256.5056.517
  26. Irving, A.J., 1980, Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. American Journal of Science. 280A, 389-426.
  27. Kil, Y.-W., 2006, Characteristics of subcontinental lithospheric mantle beneath Baegryeong Island, Korea: Spinel peridotite xenoliths. The Island Arc, 15, 269-282. https://doi.org/10.1111/j.1440-1738.2006.00526.x
  28. Kil, Y.-W., 2007, Geochemistry and petrogenesis of spinel lherzolite xenoliths from Boeun, Korea. Journal of Asian Earth Sciences, 29, 29-40. https://doi.org/10.1016/j.jseaes.2005.12.006
  29. Kil, Y., Shin, H., Yun, S., Koh, J., and Ahn, U., 2008, Geochemical characteristics of mineral phases in the mantle xenoliths from Sunheul-ri, Jeju Island. Journal of Mineralogical Society of Korea, 21, 373-382.
  30. Kim, K.H., Tanaka, T., Nagao, K., and Jang, S.K., 1999, Nd and Sr isotopes and K-Ar ages of the Ulreungdo alkali volcanic rocks in the East Sea, South Korea. Geochemical Journal, 33, 317-341. https://doi.org/10.2343/geochemj.33.317
  31. Kim, K.H., Tanaka, T., Suzuki, K., Nagao, K., and Park, E.J., 2002, Evidences of the presence of old continental basement in Cheju volcanic Island, South Korea, revealed by radiometric ages and Nd-Sr isotopes of granitic rocks. Geochemical Journal, 36, 421-441. https://doi.org/10.2343/geochemj.36.421
  32. Kim, K.H., Nagao, K., Tanaka, T., Sumino, H., Nakamura, T., Okuno, M., Lock, J.B., Youn, J.S., and Song, J., 2005, He-Ar and Nd-Sr isotopic compositions of ultramafic xenoliths and host alkali basalts from the Korean peninsula. Geochemical Journal, 39, 341-356. https://doi.org/10.2343/geochemj.39.341
  33. Kohler, T.P. and Brey, G.P., 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geobarometer for natural peridotites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta, 54, 2375-2388. https://doi.org/10.1016/0016-7037(90)90226-B
  34. Kusakabe, M., Maruyama, S., Nakamura, T., and Yada, T., 2004, $CO_2$ $laser-BrF_5$ fluorination technique for analysis of oxygen three isotopes of rocks and minerals. Journal of Mass Spectrometry Society of Japan, 52, 205-212. https://doi.org/10.5702/massspec.52.205
  35. Lee, H.Y., 1996, Petrochemical study of mantle xenoliths in alkali basalts from South Korea: P/T regime of the upper mantle. International Geology Review, 38, 320-335. https://doi.org/10.1080/00206819709465338
  36. Lee, S.R., Cho, M., Hwang, J.H., Lee, B., Kim, Y., and Kim, J.C., 2003, Crustal evolution of the Gyeonggi massif, South Korea: Nd isostopic evidence and implications for continental growths of East Asia. Precambrian Research, 121, 25-34. https://doi.org/10.1016/S0301-9268(02)00196-1
  37. Lee, S.R. and Walker, R.J., 2006, Re-Os isotope systematic of mantle xenoliths from South Korea: Evidence for complex growth and loss of lithospheric mantle beneath East Asia. Chemical Geology, 231, 90-101. https://doi.org/10.1016/j.chemgeo.2006.01.003
  38. Mattey, D., Lowry, D., and Macpherson, C., 1994, Oxygen isotope composition of mantle peridotite. Earth and Planetary Science Letters, 128, 231-241. https://doi.org/10.1016/0012-821X(94)90147-3
  39. Nardini, I., Armienti, P., Rocchi, S., Dallai, L., and Harrison, D., 2009, Sr-Nd-Pb-He-O isotope and geochemical constraints on the genesis of Cenozoic magmas from the West Antarctic Rift. Journal of Petrology, 50, 1359-1375. https://doi.org/10.1093/petrology/egn082
  40. Perinelli, C., Armienti, P., and Dallai, L., 2011, Thermal evolution of the lithosphere in a rift environment as inferred from the geochemistry of mantle cumulates, Northern Victoria Land, Antarctica. Journal of Petrology, 52, 665-690. https://doi.org/10.1093/petrology/egq099
  41. Pollack, H.N. and Champman, D.S., 1977, On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics, 38, 279-296. https://doi.org/10.1016/0040-1951(77)90215-3
  42. Putirka, K.D., 2008, Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61-120. https://doi.org/10.2138/rmg.2008.69.3
  43. Ree, J., Cho, M., Kwon, S., and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: The Imjingang belt. Geology, 24, 1071-1074. https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  44. Shim, J.Y., 2003, Geochemistry of Quaternary pumices and mantle xenoliths from the Baekdusan volcanic area. Unpublished M.S. thesis, Ewha Womans University, Seoul, Korea, 90 p.
  45. Song, Y. and Frey, F.A., 1989, Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: Implications for subcontinental mantle heterogeneity. Geochimica et Cosmochimica Acta, 53, 97-113. https://doi.org/10.1016/0016-7037(89)90276-7
  46. Wells, P.R.A., 1977, Pyroxene thermometry in simple and complex systems. Contributions to Mineralogy and Petrology, 62, 129-139. https://doi.org/10.1007/BF00372872
  47. Widom, E. and Farquhar, J., 2003, Oxygen isotope signatures in olivines from Säo Miquel (Azores) basalts: Implications for crustal and mantle processes. Chemical Geology, 193, 237-255. https://doi.org/10.1016/S0009-2541(02)00264-4
  48. Wood, B.J. and Banno, S., 1973, Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex system. Contributions to Mineralogy and Petrology, 42, 109-124. https://doi.org/10.1007/BF00371501
  49. Workman, R.K., Eiler, J.M., Hart, S.R., and Jackson, M.G., 2008, Oxygen isotopes in Samoan lavas: Confirmation of continent recycling. Geology, 36, 551-554. https://doi.org/10.1130/G24558A.1
  50. Zhang, H.-F., Sun, M., Zhou, M.-F., Fan, W.-M., Zhou, X.-H., and Zhai, M.-G., 2004, Highly heterogeneous late Mesozoic lithospheric mantle beneath north China craton: Evidence from Sr-Nd-Pb isotopic systematic of mafic igneous rocks. Geological Magazine, 141, 55-62. https://doi.org/10.1017/S0016756803008331
  51. Zhou, X., Sun, M., Zhang, G., and Chen, S., 2002, Continental crust and lithospheric mantle interaction beneath North China: Isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos, 62, 111-124. https://doi.org/10.1016/S0024-4937(02)00110-X
  52. Zindler, A. and Hart, S.R., 1986, Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14, 493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425