DOI QR코드

DOI QR Code

고분자 전해질 막 연료전지에서의 아이오딘이 코팅된 분리판의 성능 효과

Effect of Iodine-coated Bipolar Plates on the Performance of a Polymer Exchange Membrane (PEM) Fuel Cell

  • 김태언 (한국세라믹기술원 나노융합지능소재팀) ;
  • 전소미 (연세대학교 화공생명공학과, 신에너지전지융합기술 협동과정) ;
  • 조광연 (한국세라믹기술원 나노융합지능소재팀) ;
  • 설용건 (연세대학교 화공생명공학과, 신에너지전지융합기술 협동과정)
  • Kim, Taeeon (Intelligence Nano Convergence Material Team, The Korea Institute of Ceramic Eng. and Tech.) ;
  • Juon, Some (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.) ;
  • Cho, Kwangyeon (Intelligence Nano Convergence Material Team, The Korea Institute of Ceramic Eng. and Tech.) ;
  • Shul, Yonggun (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
  • 투고 : 2013.01.03
  • 심사 : 2013.02.28
  • 발행 : 2013.02.28

초록

Polymer exchange membrane (PEM) fuel cells have multifunctional properties, and bipolar plates are one of the key components in these fuel cells. Generally, a bipolar plate has a gas flow path for hydrogen and oxygen liberated at the anode and cathode, respectively. In this study, the influence of iodine applied to a bipolar plate was investigated. Accordingly, we compared bipolar plates with and without iodine coating, and the performances of these plates were evaluated under operating conditions of $75^{\circ}C$ and 100% relative humidity. The membrane and platinum-carbon layer were affected by the iodine-coated bipolar plate. Bipolar plates coated with iodine and a membrane-electrode assembly (MEA) were investigated by electron probe microanalyzer (EPMA) and energy-dispersive x-ray spectroscopy (EDS) analysis. Polarization curves showed that the performance of a coated bipolar plate is approximately 19% higher than that of a plate without coating. Moreover, electrochemical impedance spectroscopy (EIS) analysis revealed that charge transfer resistance and membrane resistance decreased with the influence of the iodine charge transfer complex for fuel cells on the performance.

키워드

참고문헌

  1. M. L. Perry, and T. F. Fuller, "A Historical Perspective of Fuel Cell Technology in the 20th Century", J. Electrochem. Soc., Vol. 419, No. 7, 2002, pp. S59-S67.
  2. B. C. H. Steele, and A. Heinzel, "Materials for fuel cell technologies", Nature, Vol. 414, 2001, pp. 345-352. https://doi.org/10.1038/35104620
  3. S. J. Lee, S. Mukergee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, "Effects of Nafion impregnation on performances of PEMFC electrodes", Electrochimica Acta, Vol. 43, No. 24, 1998, pp. 3693-3701. https://doi.org/10.1016/S0013-4686(98)00127-3
  4. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 9349-9384. https://doi.org/10.1016/j.ijhydene.2010.05.017
  5. L. Zhang, S. R. Chae, Z. Hendren, J. S. Park, and M. R. Wiesner, "Recent advances in proton exchange membranes for fuel cell application", Chem. Eng. J., Vol. 204-206, 2012, pp. 87-97. https://doi.org/10.1016/j.cej.2012.07.103
  6. J. K. Lee, H. Y. Ha, S. A. Hong, H. S. Chun, T. W. Lim, and I. H. Oh, "Effects of Preparation Method of Catalytic Layer on the Performance of Polymer Electrolyte Membrane Fuel Cells", J. Kor. Inst. Chem. Eng., Vol. 39, No. 1, 2001, pp. 109-115.
  7. F. A. de Bruijn, V.A.T. Dam, and G. J. M. Janssen, "Review: Durability and Degradation Issues of PEM Fuel Cell Components", Fuel Cell, Vol. 8, No. 1, 2008, pp. 3-22. https://doi.org/10.1002/fuce.200700053
  8. H. Li, H. Wang, W. Qian, S. Zhang, S. Wessel, T. T. H. Cheng, J. Shen, and S. Wu, "Chloride contamination effects on proton exchange membrane fuel cell performance and durability", J. Power Sources, Vol. 196, 2011, pp. 6249-6255. https://doi.org/10.1016/j.jpowsour.2011.04.018
  9. W. M. Yan, H. S. Chu, Y. L. Liu, F. Chen, and J. H. Jang, "Effects of chlorides on the performance of proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 36, No. 36, 2011, pp. 5435-5441. https://doi.org/10.1016/j.ijhydene.2011.01.158
  10. C. W. Forsberg, "Hydrogen, nuclear energy, and the advanced high-temperature reactor", Int. J. Hydrogen Energy, Vol. 28, 2003, pp. 1073-1081.
  11. J. E. Funk, "Thermochemical hydrogen production: past and present", Int. J. Hydrogen Energy, Vol. 26, 2001, pp. 185-190. https://doi.org/10.1016/S0360-3199(00)00062-8
  12. B. P. Dailey, "Halogen Bond Character in the Alkyl Halides", J. Chem. Phys, Vol. 33, No. 6, 1960, pp. 1641-1643. https://doi.org/10.1063/1.1731476
  13. P. J. Kropp, "Photobehavior of Alkyl Halides in Solution: Radical, Carbocation, and Carbene Intermediates", Acc. Chem. Res, Vol. 17, 1984, pp. 131-137. https://doi.org/10.1021/ar00100a003
  14. J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin, and S. Holdcroft, "Properties of Nafion NR-211 membranes for PEMFCs", J. Membr. Sci, Vol. 356, 2010, pp. 44-51. https://doi.org/10.1016/j.memsci.2010.03.025
  15. W. Liu, Y. Xie, J. Liu, Xiao. Jie, J. Gu, and Z. Zou, "Experimental study of proton exchange membrane fuel cells using Nafion 212 and Nafion 211 for portable application at ambient pressure and temperature conditions", Int. J. Hydrogen Energy, Vol. 37, 2012, pp. 4673-4677. https://doi.org/10.1016/j.ijhydene.2011.04.233
  16. A. C. Fernandes, and E. A. Ticianelli, "A performance and degradation study of Nafion 212 membrane for proton exchange membrane fuel cell", J. Power Sources, Vol. 193, 2009, pp. 547-554. https://doi.org/10.1016/j.jpowsour.2009.04.038
  17. S. Bhatt, B. Gupta, V. K. Sethi, and M. Pandey, "Polymer Exchange Membrane (PEM) Fuel Cell: A Review", Int. J. Curr. Eng. Tech., Vol. 2, No. 1, 2012, pp. 219-226.
  18. T. E. Springer, T. A. Zawodzinski, M. S. Wilson, and S. gottesfeld, "Characterization of Polymer Electrolyte Fuel Cell Using AC Impedance Spectroscopy", J. Electrochem. Soc., Vol. 143, No. 2, 1996, pp. 587-599. https://doi.org/10.1149/1.1836485
  19. Y. Okamoto, and W. Brenner, "Organic Semiconductor", Reinhold Publ. Corp., New York, 1964.
  20. H. Akamatsu, H. Inokuchi, and Y. Matsunaga, "Electrical Conductivity of the Perylene-Bromine Complex", Nature, Vol. 173, No. 4395, 1954, pp. 168-169. https://doi.org/10.1038/173168a0
  21. S. Sun, H. Yu, J. Hou, Z. Shao, B. Yi, P. Ming, and Z. Hou, "Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature", J. Power Sources, Vol. 177, 2008, pp. 137-141. https://doi.org/10.1016/j.jpowsour.2007.11.012
  22. A. E. Thomas and A. Wieckowski, "Surface diffusion limited desorption of iodine on a platinum electrode", J. Electroanal. Chem., Vol. 399, 1995, pp. 207-212. https://doi.org/10.1016/0022-0728(95)04226-1
  23. V. Ramani, H. R. Kunz, and J. M. Fenton, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., Vol. 232, 2004, pp. 31-34. https://doi.org/10.1016/j.memsci.2003.11.016
  24. V. Ramani, H. R. Kunz, and J. M. Fenton, "Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation", J. Power Sources, Vol. 152, 2005, pp. 182-188. https://doi.org/10.1016/j.jpowsour.2005.03.135