DOI QR코드

DOI QR Code

선형모델을 이용한 수동변속기의 동적 특성 연구

Study on the Dynamic Characteristics of a Manual Transmission Using Linear Models

  • Yoon, Jong-Yun (STX Heavy Industry Co.) ;
  • Lee, Iljae (Department of Mechanical Engineering, Chonbuk National University)
  • 투고 : 2012.12.04
  • 심사 : 2013.02.18
  • 발행 : 2013.03.20

초록

자동차 수동변속기 내 래틀과 같은 회전체 진동은 엔진 연소폭발 주기와 연동하여 발생한다. 이러한 충격형 진동 특성은 선형 시간 불변 분석법을 적용하여 살펴볼 수 있다. 기어의 동적 특성을 이해하기 위해, 특정 형태의 앞 바퀴 굴림 방식 수동 변속기에 대한 연구를 수행하였다. 첫째, 동특성 고유값과 주파수 응답함수를 기반으로 자유도를 줄이는 방법을 제시하였는데, 이는 행렬의 크기를 줄이는 효과적인 역할을 한다. 둘째, 단일 질량 플라이휠과 이중 질량 플라이휠의 동적 특성을 비교하였다. 모빌리티 분석을 기반으로 한 이중 질량 플라이휠의 효과를 검토하였는데, 이로부터 진동에 의해 가진되는 충격을 회피하기 위한 기본 개념을 이해 할 수 있다. 마지막으로, 두 단계 클러치 댐퍼로부터 유효 강성 값을 도출하여 선형 불변형 시스템 모델을 연구하였다. 두 단계의 서로 다른 클러치 강성조합을 이용하여 클러치 댐퍼의 동적특성에 대한 관계를 예측할 수 있다.

Torsional vibrations, such as the gear rattle of the manual transmission in vehicle systems, are correlated with the firing stroke from the engine. These vibro-impacts can be examined based upon linear time-invariant analysis. In order to understand the gear dynamics, a specific manual transmission with a front-engine front-wheel drive configuration is investigated. A method to reduce the degrees of freedom is suggested based upon the eigensolutions and frequency response functions, which will lead to the development of an efficient matrix size. The dynamic characteristics of single- and dual-mass flywheels are then compared. The effect of the dual-mass flywheel is investigated based upon the mobility analysis, which will lead to understanding of the concepts for avoiding vibro-impacts. A linear time-invariant system model is examined by employing the effective clutch stiffness from a two-stage clutch damper. Thus, the relationship between the dynamic characteristics and the clutch damper can be predicted by assuming a combination of different stage stiffness levels.

키워드

참고문헌

  1. Couderc, P., Callenaere, J., Hagopian, J. D. and Ferraris, G., 1998, Vehicle Driveline Dynamic Behavior: Experimentation and Simulation, Journal of Sound and Vibration, Vol. 218, No. 1, pp. 133-157. https://doi.org/10.1006/jsvi.1998.1808
  2. Chikatani, Y. and Suehiro, A., 1991, Reduction of Idling Rattle Noise in Trucks, SAE 911044, pp. 49-56.
  3. Howell, T. P., Powell, N. N. and Etheridge, P., 2002, The Application of Correlated Modeling Techniques to Investigate Gear Rattle Noise in a Harley-Davidson Motorcycle, Inter-Noise 2002 Proceedings, pp. 2469-2477.
  4. Shimizu, T., 1993, Mechanism of the Idle Gear Rattle Synchronized with Engine Rotation, SAE 932003 pp. 7-13.
  5. Barthod, M., Hayne, B., Tebec, J. L. and Pin, J. C., 2007, Experimental Study of Gear Rattle Excited by a Multi-harmonic Excitation, Applied Acoustics 68, pp. 1003-1025. https://doi.org/10.1016/j.apacoust.2006.04.011
  6. Rocca, E. and Russo, R., 2011, Theoretical and Experimental Investigation Into the Influence of the Periodic Backlash Fluctuations on the Gear Rattle, Journal of Sound and Vibration, Vol. 330, pp. 4738-4752. https://doi.org/10.1016/j.jsv.2011.04.008
  7. Laschet, A., 1994, Computer Simulation of Vibration in Vehicle Powertrains Considering Nonlinear Effects in Clutches and Manual Transmissions, SAE 941011, pp. 1-8.
  8. Padmanabhan, C., Rook, T. E. and Singh, R., 1995, Modeling of Automotive Gear Rattle Phenomenon: State of the Art, SAE 951316, pp. 669-680.
  9. Padmanabhan, C. and Singh, R., 1993, Influence of Clutch Design on the Reduction and Perception of Automotive Transmission Rattle Noise, Noise-Con 93 Proceedings, pp. 607-612.
  10. Singh, R., Xie, H. and Comparin, R. J., 1989, Analysis of Automotive Neutral Gear Rattle, Journal of Sound and Vibration, Vol. 131, pp. 177-196. https://doi.org/10.1016/0022-460X(89)90485-9
  11. Hong, D. P., Chung, T. J. and Tae, S. H., 1994, A Study for the Torsional Characteristics of Clutch and Automotive Neutral Gear Rattle, Proceedings of the KSNVE Annual Autumn Conference, pp. 100-105.
  12. Ahn, M. J., Cho, S. M., Yoon, J. Y., Kim, J. S. and Lyu, S. K., 2007, Linear Analysis of Geared System with a Manual Transmission, Journal of the Korean Society of Safety, Vol. 22, No. 5, pp. 1-6.
  13. Ahn, M. J., Lyu, S. K., Yoon, J. Y., Qi, Z. and Ahn, I. H., 2010, A Study of the Linear Analysis for Nonlinear Torsional System, Journal of the Korean Society of Manufacturing Process Engineers, Vol. 9, No. 2, pp. 12-19.
  14. Kim, T. C. and Singh, R., 2001, Dynamic Interactions between Loaded and Unloaded Gears, SAE Transactions, Vol. 110, Section 6, pp. 1934-1943.
  15. Trochon, E. P., 1997, Analytical Formulation of Automotive Drivetrain Rattle Problems, MS Thesis, The Ohio State University.
  16. Hartog, J. P., 1985, Mechanical Vibrations, Dover, pp. 351-353.
  17. Gaillard, C. L. and Singh, R., 2000, Dynamic Analysis of Automotive Clutch Dampers, Applied Acoustics, Vol. 60, pp. 399-424. https://doi.org/10.1016/S0003-682X(00)00005-0