DOI QR코드

DOI QR Code

Investigation of SLF Interruption Capability of Gas Circuit Breaker with CFD and a Mathematical Arc Model

  • Cho, Yong-Sung (Power Apparatus Research Center, Korea Electrotechnology Research Institute) ;
  • Kim, Hong-Kyu (Power Apparatus Research Center, Korea Electrotechnology Research Institute) ;
  • Chong, Jin-Kyo (Power Apparatus Research Center, Korea Electrotechnology Research Institute) ;
  • Lee, Woo-Young (Power Apparatus Research Center, Korea Electrotechnology Research Institute)
  • Received : 2012.06.27
  • Accepted : 2012.08.11
  • Published : 2013.03.01

Abstract

This paper discusses the analysis of arc conductance in a gas circuit breaker (GCB) during current interruption process and the investigation method of the interruption capability. There are some limitations in the application of the computational fluid dynamics (CFD) for the implementation of an arc model around the current zero, despite the fact that it gives good results for the high-current phase arc. In this study, we improved the accuracy in the analysis of the interruption performance by attempting the method using CFD and a mathematical arc model. The arc conductance at 200 ns before current zero (G-200ns) is selected as the indicator to predict the current interruption of the Short Line Fault (SLF). Finally, the proposed method is verified by applying to the actual circuit breakers which have different interruption performances.

Keywords

References

  1. J. D. Yan, T. M. Wong, X. Ye, M. Claessens, and M.T.C Fang: Proc. 16th Int. Conf. on Gas Discharges and Their Applications (2006) 157.
  2. H. K. Kim, J. K. Chong, and K. D. Song: JEET Vol. 5, No. 2 (2010) 264.
  3. R. Bini, N. T. Basse, and M. Seeger: J. Phys. D: Appl. Phys. 44 (2011) 025203 (9pp).
  4. E. SCHADE and K. RAGALLER: IEEE Trans. Plasma Sci. 3 (1982) 162.
  5. J. D. Yan, K. I. Nuttall, and M. T. C. Fang: J. Phys. D: Appl. Phys. 32 (1999) 1401-1406. https://doi.org/10.1088/0022-3727/32/12/317
  6. M. T. C. Fang and Q. Zhuang: J. Phys. D: Appl. Phys. 25 (1992) 1197. https://doi.org/10.1088/0022-3727/25/8/007
  7. M. T. C. Fang and Q. Zhuang, and X. J. Guo: J. Phys. D: Appl. Phys. 27 (1994) 74. https://doi.org/10.1088/0022-3727/27/1/011
  8. C. M. Franck and M. Seeger: Contrib. Plasma Phys. 46, No. 10, (2006) 787. https://doi.org/10.1002/ctpp.200610079
  9. R. P. P. Smeets, V. Kertesz, S. Nishiwaki, K. Suzuki: IEEE/PES T&D Conference Asia Pacific (2002) 424.
  10. R. P. P. SMEETS, V. KERTESZ: Cigre Conf. paper A3-110 (2006).
  11. C. M. Dixon, J. D. Yan, and M. T. C. Fang: J. Phys. D: Appl. Phys. 37 (2004) 3309. https://doi.org/10.1088/0022-3727/37/23/013
  12. H. Nordborg and A. A. Iordanidis: J. Phys. D: Appl. Phys. 41 (2008) 135205 (10pp).
  13. A. M. Cassie: Cigre, Rep. 102 (1939) 588 [in France].
  14. O. Mayr: Archiv fur Elektrotechnik. Vol. Band 37, No. Heft 12 (1943) [in German].
  15. R. P. P. Smeets and v. Kertesz: IEE Proc. Generation, Transmission & Distribution, Vol. 147, No. 2 (2000) 121. https://doi.org/10.1049/ip-gtd:20000238
  16. L. van der Sluis, and W. R. Rutgers: IEEE Trans. Power Delievery 7 (1992) 2037. https://doi.org/10.1109/61.157007
  17. T. Shinkai, T. Koshiduka, T. Mori, and T. Uchii: Electrical Engineering in Japan, Vol. 167, No. 1 (2009) 9.

Cited by

  1. Analysis of SLF Interruption Performance of Self-Blast Circuit Breaker by Means of CFD Calculation vol.9, pp.1, 2014, https://doi.org/10.5370/JEET.2014.9.1.254