References
- 권오남 (2005). 탐구지향 미분방정식 교수-학습의 효과분석, 수학교육 44(3), 375-396.(Kwon, O.N. (2005). Effects of inquiry-oriented differential equations instruction based on the realistic mathematics education, The Mathematical Education 44(3), 375-396.)
-
박혜숙, 김서령, 김완순 (2005). 수학적 개념의 발생적 분해의 적용-추상대수학에서의
$Z_n$ 의 경우, 수학교육 44(4), 547-563.(Park, H.S., Kim, S.R., & Kim, W.S. (2005). On the applications of the genetic decomposition of mathematical concepts- in case of$Z_n$ in abstract algebra, The Mathematical Education 44(4), 547-563.) - 최영한 (2004). 선형대수의 가르침에 고려하여야 할 사항에 관한 연구, 수학교육논문집 18(2), 93-108.(Choi, Y.H. (2004). Some aspect in teaching linear algebra, Communications of Mathematical Education 18(2), 93-108.)
- Asials, M., Brown, A., Kleiman, J., & Mathews, D. (1998). The development of students understanding of permutations and symmetries, International J. of Computers for Mathematical Learning, 3(1) 13-43. https://doi.org/10.1023/A:1009738109343
- Asials, M., Dubinsky, E., Mathews, D., Morics, S., & Oktac, A. (1997). Development of students' understanding of cosets, normality, and quotient groups, J. of Mathematical Behavior, 16(3) 241-309. https://doi.org/10.1016/S0732-3123(97)90029-8
- Baxter, N., Dubinsky, E., & Levin, G. (1988). Learning discrete mathematics with ISETL, Springer, NY.
- Blanchard, P., & Holdener, J. (2001). Increasing accessibility of examples in abstract algebra using GAP, AMS Meeting. New Orleans, LO.
- Brooks, J.G. & Brooks, M.G. (1993). In search of understanding: The case for constructivist classrooms. Alexandria, VA.
- Brown, A., DeVries, D., Dubinsky, E., & Thomas, K. (1997). Learning binary operations, groups, and subgroups, J. of Mathematical Behavior, 16(3), 187-239. https://doi.org/10.1016/S0732-3123(97)90028-6
- Bruner, J. (1977). The process of education, Harvard Univ. Press, Cambridge, MA.
- Burn, R. (1998). Participating in the learning of group theory, PRIMUS, 8(4) 305-316.
- Charlwood, K. (2002). Some uses of Maple in the teaching of modern algebra. In E. Hibbard et.al. (Eds.), Innovations in teaching abstract algebra MAA, 91-96.
- Dubinsky, E. (1995). ISETL: A program language for learning mathematics, Communications in Pure and Applied Math. 48, 1-25.
- Dubinsky, E., Dautermann, J., Leron, U., & Zazkis, R. (1994). On learning fundamental concepts of group theory, Educational Studies in Math. 27, 267-305. https://doi.org/10.1007/BF01273732
- Dubinsky, E., & Leron, U. (1993). Learning abstract algebra with ISETL, Springer, NY.
- Edwards, T., & Brenton, L. (1999). An attempt to foster students' construction of knowledge during a semester course in abstract algebra, The College Math. J. 30(2), 120-128. https://doi.org/10.2307/2687722
- Findell, B. (2001). Learning and understanding in abstract algebra, Ph.D. Thesis, U. New Hampshire.
- Freudenthal, H. (1973). Mathematics as an educational task, Dordrecht, D. Reidel.
- Gallian, J. (1994). Contemporary abstract algebra, Heath and Company, Lexington, MA.
- Katz, V. (2007). MAA report: Algebra-Gateway to a technological future, U. District of Columbia, MAA.
- Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning, 390-414. Macmillan Publishing Company, NY.
- Leron, U., & Dubinsky, E. (1995a). An abstract story, Amer. Math. Monthly 102(3), 227-242. https://doi.org/10.2307/2975010
- Leron, U., Hazzan, O., & Zaskis, R. (1995b). Learning group isomorphism. Educational Studies in Math. 29(2), 153-174. https://doi.org/10.1007/BF01274211
- Levin, G. (1990). Introduction to computer science: an interactive approach using ISETL. ACM SIGCSE Bulletin, 22(1), 31-33. https://doi.org/10.1145/319059.319075
- Maycock, E. (2002). Laboratory experiences in group theory: A discovery approach. In Ed. Hibbard, et. al.(Eds.), Innovations in teaching abstract algebra, MAA. 41-43.
- Perry, A. (2004). A discovery oriented technology enhanced abstract algebra course, Education, 124(4), 694.
- Piaget, J. (1970). Genetic epistemology. Columbia Univ. Press. NY.
- Pirie, S., & Kieren, T. (1989). A recursive theory of mathematical understanding. For the Learning of Math. 9(3), 7-11.
- Pirie, S., & Kieren, T. (1990). A recursive theory for mathematical understanding: some elements and implications, Annual meeting of Amer. Edu. Research Association, Boston.
- Scher, D., & Findell, B. (1996). Research in undergraduate mathematics education: A map of the territory, Education Development Center, INC. http://blue.butler.edu/-phenders/STUFF/Mathema tical%20thinking/
- Selden, A., & Selden, J. (1987). Errors and misconceptions in college level theorem proving, Proc. of the 2nd International Seminar on Misconceptions and Educational Strategies in Science and Mathematics, Vol. III , Cornell U. 457-470.
- Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Math, 12(2), 151-169. https://doi.org/10.1007/BF00305619
- Thrash, K., & Walls, G. (1991). A classroom note on understanding the concept of group isomorphism, Math. and Computer Edu. 25(1), 53-55.
-
Zazkis, R., Dubinsky, E. & Dautermann, J. (1996). Coordinating visual and analytic strategies: A study of students understanding of the group
$D_4$ . J. for Research in Math. Edu. 27(4), 435-457. https://doi.org/10.2307/749876