DOI QR코드

DOI QR Code

Histopathological Changes in Tissues of Bithynia siamensis goniomphalos Incubated in Crude Extracts of Camellia Seed and Mangosteen Pericarp

  • Aukkanimart, Ratchadawan (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Boonmars, Thidarut (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Pinlaor, Somchai (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Tesana, Smarn (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Aunpromma, Surasit (Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University) ;
  • Booyarat, Chantana (Faculty of Veterinary Medicine, Khon Kaen University) ;
  • Sriraj, Pranee (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Laummaunwai, Porntip (Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University) ;
  • Punjaruk, Wiyada (Faculty of Physiology, Khon Kaen University)
  • Received : 2013.03.11
  • Accepted : 2013.08.21
  • Published : 2013.10.31

Abstract

The present study was performed to observe histopathological changes in tissues of Bithynia siamensis goniomphalos (Gastropoda, Bithyniidae) incubated in crude extract solutions of camellia (Camellia oleifera) seed and mangosteen (Garcinia mangostana) pericarp, and furthermore to estimate the molluscicidal effects of 2 plant substances. Substantial numbers of bithyniid snails were incubated in various concentrations of 2 plant solution for 24 hr. As the positive control, snails incubated in various concentrations of niclosamide, a chemical molluscicide, were used. The histopathological findings were observed in sectioned snail specimens of each experimental and control groups. The results showed that both camellia and mangosteen extracts had molluscicidal effects at 24 hr with 50% lethal concentration ($LC_{50}$) at concentrations of 0.003 and 0.002 g/ml, respectively, while niclosamide had $LC_{50}$ at concentrations 0.599 ppm. B. siamensis goniomphalos snail tissues (foot, gill, and digestive system) showed disruption of columnar muscle fibers of the foot, reduction of the length and number of gill cilia, numerous mucous vacuoles, and irregularly shaped of epithelial cells. Irregular apical and calciferous cells, dilatation of the digestive gland tubule, and large hemolymphatic spaces, and irregular apical surfaces, detachment of cilia, and enlargement of lysosomal vacuoles of epidermis were also shown in all groups. By the present study, it is confirmed that 2 plants, camellia and mangosteen, are keeping some substance having molluscicidal effects, and histopathological findings obtained in this study will provide some clues in further studies on their action mechanisms to use them as natural molluscicides.

Keywords

References

  1. Herrmann KK, Sorensen RE. Seasonal dynamics of two mortality-related trematodes using an introduced snail. J Parasitol 2009; 95: 823-828. https://doi.org/10.1645/GE-1922.1
  2. De Liberato C, Scaramozzino P, Brozzi A, Lorenzetti R, Di Cave D, Martini E, Lucangeli C, Pozio E, Berrilli F, Bossù T. Investigation on Opisthorchis felineus occurrence and life cycle in Italy. Vet Parasitol 2011; 177: 67-71. https://doi.org/10.1016/j.vetpar.2010.11.042
  3. World Health Organization. The control of schistosomiasis. Report of WHO Expert Committee. Geneva, Switzerland. WHO. 1985, p. 58-59.
  4. Hoffman GL. Control methods for snail-borne zoonoses. J Wildl Dis 1970; 6: 262-265. https://doi.org/10.7589/0090-3558-6.4.262
  5. Wang WL, Zhang HZ, Cai ZD, Qin Q, Liu FC, Xu XJ, Wei FH, Zheng J. Evaluation on schistosomiasis control effect of the intervention measures adapted to the ecological environment changes in Jiang Han Plain due to establishment of the Three Gorges dam. Chinese J Parasitol Parasit Dis 2007; 30; 25: 114-119 (in Chinese).
  6. Hung NM, Duc NV, Stauffer JR Jr, Madsen H. Use of black carp (Mylopharyngodon piceus) in biological control of intermediate host snails of fish-borne zoonotic trematodes in nursery ponds in the Red River Delta, Vietnam. Parasit Vectors 2013; 6; 142. https://doi.org/10.1186/1756-3305-6-142
  7. Reddy A, Ponder EL, Fried B. Effects of copper sulfate toxicity on cercariae and metacercariae of Echinostoma caproni and Echinostoma trivolvis and on the survival of Biomphalaria glabrata snails. J Parasitol 2004; 90: 1332-1337. https://doi.org/10.1645/GE-321R
  8. Otludil B, Cengiz EI, Yildirim MZ, Unver O, Unlü E. The effects of endosulfan on the great ramshorn snail Planorbarius corneus (Gastropoda, Pulmonata): a histopathological study. Chemosphere 2004; 56: 707-716. https://doi.org/10.1016/j.chemosphere.2004.04.027
  9. Dai JR, Coles GC, Wang W, Liang YS. Toxicity of a novel suspension concentrate of niclosamide against Biomphalaria glabrata. Trans R Soc Trop Med Hyg 2010; 104: 304-306. https://doi.org/10.1016/j.trstmh.2009.07.015
  10. Abebe F, Erko B, Gemetchu T, Gundersen SG. Control of Biomphalaria pfeifferi population and schistosomiasis transmission in Ethiopia using the soap berry endod (Phytolacca dodecandra), with special emphasis on application methods. Trans R Soc Trop Med Hyg 2005; 99: 787-794. https://doi.org/10.1016/j.trstmh.2005.04.013
  11. Adenusi AA, Odaibo AB. Laboratory assessment of molluscicidal activity of crude aqueous and ethanolic extracts of Dalbergia sissoo plant parts against Biomphalaria pfeifferi. Travel Med Infect Dis 2008; 6: 219-227. https://doi.org/10.1016/j.tmaid.2007.12.004
  12. Salama MM, Taher EE, El-Bahy MM. Molluscicidal and mosquitocidal activities of the essential oils of Thymus capitatus Hoff. et Link. and Marrubium vulgare L. Rev Inst Med Trop Sao Paulo 2012; 54: 281-286. https://doi.org/10.1590/S0036-46652012000500008
  13. Iinuma M, Tosa H, Tanaka T, Asai F, Kobayashi Y, Shimano R, Miyauchi K. Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J Pharm Pharmacol 1996; 48: 861-865. https://doi.org/10.1111/j.2042-7158.1996.tb03988.x
  14. Kaomongkolgit R, Jamdee K, Chaisomboon N. Antifungal activity of alpha-mangostin against Candida albicans. J Oral Sci 2009; 51: 401-406. https://doi.org/10.2334/josnusd.51.401
  15. Keiser J, Vargas M, Winter R. Anthelminthic properties of mangostin and mangostin diacetate. Parasitol Int 2012; 61: 369-371. https://doi.org/10.1016/j.parint.2012.01.004
  16. Upatham ES, Sornmani S, Kittikorn V, Lohachit C, Burch JB. Identification key for fresh and brackishwater snail of Thailand. Malacol Rev 1983; 16: 107-132.
  17. SEAMEO Regional Tropical Medicine and Public Health Project. Snails of medical importance in Southeast Asia. Southeast Asian J Trop Med Public Health 1986; 17: 282-322.
  18. Evans NA, Whitfield PJ, Squire BJ, Fellows LE, Evans SV, Millott SM. Molluscicidal activity in the seeds of Millettia thonningii (Leguminosae: Papilionoideae). Trans R Soc Trop Med Hyg 1986; 80: 451-453. https://doi.org/10.1016/0035-9203(86)90340-8
  19. dos Santos AF, Ferraz PA, Pinto AV, Pinto M do C, Goulart MO, Sant'Ana AE. Molluscicidal activity of 2-hydroxy-3-alkyl-1, 4-naphthoquinones and derivatives. J Parasitol 2000; 30: 1199-1202.
  20. Al-Zanbagi NA, Barrett J, Banaja A. Laboratory evaluation of the molluscicidal properties of some Saudi Arabian euphorbiales against Biomphalaria pfeifferi. Acta Trop 2001; 78: 23-29. https://doi.org/10.1016/S0001-706X(00)00166-2
  21. Teixeira T, Rosa JS, Rainha N, Baptista J, Rodrigues A. Assessment of molluscicidal activity of essential oils from five Azorean plants against Radix peregra. Chemosphere 2012; 87: 1-6. https://doi.org/10.1016/j.chemosphere.2011.11.027
  22. Boonjaraspinyo S, Boonmars T, Aromdee C, Puapairoj A, Wu Z. Indirect effect of a turmeric diet: enhanced bile duct proliferation in Syrian hamsters with a combination of partial obstruction by Opisthorchis viverrini infection and inflammation by Nnitrosodimethylamine administration. Parasitol Res 2011; 108: 7-14. https://doi.org/10.1007/s00436-010-2031-7
  23. Boonmars T, Wu Z, Boonjaruspinyo S, Puapairoj A, Kaewsamut B, Nagano I, Pinlaor S, Yongvanit P, Wonkchalee O, Juasook A, Sudsarn P, Srisawangwong T. Involvement of c-Ski oncoprotein in carcinogenesis of cholangiocarcinoma induced by Opisthorchis viverrini and N-nitrosodimethylamine. Pathol Oncol Res 2011; 17: 219-227. https://doi.org/10.1007/s12253-010-9300-8
  24. Wonkchalee O, Boonmars T, Kaewkes S, Chamgramol Y, Aromdee C,Wu Z, Juasook A, Sudsarn P, Boonjaraspinyo S, Pairojkul C. Comparative studies on animal models for Opisthorchis viverrini infection: host interaction through susceptibility and pathology. Parasitol Res 2012; 110: 1213-1223. https://doi.org/10.1007/s00436-011-2616-9
  25. Viard B, Pihan F, Promeyrat S, Pihan JC. Integrated assessment of heavy metal (Pb, Zn, Cd) highway pollution: bioaccumulation in soil, Graminaceae and land snails. Chemosphere 2004; 55: 1349-1359. https://doi.org/10.1016/j.chemosphere.2004.01.003
  26. Triebskorn R, Telcean I, Casper H, Farkas A, Sandu C, Stan G, Colărescu O, Dori T, Köhler HR. Monitoring pollution in River Mureş, Romania, part II: metal accumulation and histopathology in fish. Environ Monit and Assess 2008; 141: 177-188. https://doi.org/10.1007/s10661-007-9886-9
  27. el Sawy MF, Duncan J, Amer S, el Ruweini H, Brown N, Hills M. The molluscicidal properties of Ambrosia maritima L. (Compositae). A comparative field trial using dry and freshly-harvested plant material. Trop Med Parasitol 1987; 38: 101-105.
  28. Riba I, Blasco J, Jiménez-Tenorio N, de Canales ML, DelValls TA. Heavy metal bioavailability and effects: II. Histopathology-bioaccumulation relationships caused by mining activities in the Gulf of Cádiz (SW, Spain). Chemosphere 2005; 58: 671-682. https://doi.org/10.1016/j.chemosphere.2004.02.016
  29. Tanhan P, Sretarugsa P, Pokethitiyook P, Kruatrachue M, Upatham ES. Histopathological alterations in the edible snail, Babylonia areolata (spotted babylon), in acute and subchronic cadmium poisoning. Environ Toxicol 2005; 20: 142-149. https://doi.org/10.1002/tox.20088
  30. Abdallah AT, Moustafa MA. Accumulation of lead and cadmium in the marine prosobranch Nerita saxtilis, chemical analysis, light and electron microscopy. Environ Pollut 2002; 116: 185-191. https://doi.org/10.1016/S0269-7491(01)00137-3
  31. Tesana S, Thapsripair P, Thammasiri C, Prasopdee S, Suwannatrai A, Harauy S, Piratae S, Khampoosa P, Kulsantiwong J, Donthaisong C, Chalokepanrat P, Viyanant V, Malone JB. Effects of Bayluscide on Bithynia siamensis goniomphalos, the first intermediate host of the human liver fluke, Opisthorchis viverrini, in laboratory and field trials. Parasitol Int 2012; 61: 52-55. https://doi.org/10.1016/j.parint.2011.08.003
  32. Tkatcheva V, Hyvärinen H, Kukkonen J, Ryzhkov LP, Holopainen IJ. Toxic effects of mining effluents on fish gills in a subarctic lake system in NW Russia. Ecotoxicol Environ Saf 2004; 57: 278-289. https://doi.org/10.1016/S0147-6513(03)00079-4
  33. Arellano JM, Storch V, Sarasquete C. Histological changes and copper accumulation in liver and gills of the Senegales sole, Solea senegalensis. Ecotoxicol Environ Saf 1999; 44: 62-72. https://doi.org/10.1006/eesa.1999.1801
  34. Kruatrachue M, Sumritdee C, Pokethitiyook P, Singhakaew S. Histopathological effects of contaminated sediments on golden apple snail (Pomacea canaliculata, Lamarck 1822). Bull Environ Contam Toxicol 2011; 86: 610-614. https://doi.org/10.1007/s00128-011-0265-4
  35. Unlü E, Cengiz EI, Yildirim MZ, Otludil B, Unver O. Histopathological effects in tissues of snail Lymnaea stagnalis (Gastropoda, Pulmonata) exposed to sublethal concentration of $Thiodan^((R))$ and recovery after exposure. J Appl Toxicol 2005; 25: 459-463. https://doi.org/10.1002/jat.1075

Cited by

  1. Linalool, derived from Cinnamomum camphora (L.) Presl leaf extracts, possesses molluscicidal activity against Oncomelania hupensis and inhibits infection of Schistosoma japonicum vol.7, pp.1, 2014, https://doi.org/10.1186/1756-3305-7-407
  2. Snail-borne parasitic diseases: an update on global epidemiological distribution, transmission interruption and control methods vol.7, pp.1, 2013, https://doi.org/10.1186/s40249-018-0414-7