DOI QR코드

DOI QR Code

Genetic Variation of Taenia Pisiformis Collected from Sichuan, China, Based on the Mitochondrial Cytochrome b gene

  • Yang, Deying (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Ren, Yongjun (Sichuan Academy of Animal Science) ;
  • Fu, Yan (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Xie, Yue (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Nie, Huaming (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Nong, Xiang (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Gu, Xiaobin (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Wang, Shuxian (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University) ;
  • Peng, Xuerong (Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University) ;
  • Yang, Guangyou (Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University)
  • 투고 : 2013.03.27
  • 심사 : 2013.06.05
  • 발행 : 2013.08.31

초록

Taenia pisiformis is one of the most important parasites of canines and rabbits. T. pisiformis cysticercus (the larval stage) causes severe damage to rabbit breeding, which results in huge economic losses. In this study, the genetic variation of T. pisiformis was determined in Sichuan Province, China. Fragments of the mitochondrial cytochrome b (cytb) (922 bp) gene were amplified in 53 isolates from 8 regions of T. pisiformis. Overall, 12 haplotypes were found in these 53 cytb sequences. Molecular genetic variations showed 98.4% genetic variation derived from intra-region. $F_{ST}$ and Nm values suggested that 53 isolates were not genetically differentiated and had low levels of genetic diversity. Neutrality indices of the cytb sequences showed the evolution of T. pisiformis followed a neutral mode. Phylogenetic analysis revealed no correlation between phylogeny and geographic distribution. These findings indicate that 53 isolates of T. pisiformis keep a low genetic variation, which provide useful knowledge for monitoring changes in parasite populations for future control strategies.

키워드

참고문헌

  1. Bagrade G, Kirjusina M, Vismanis K, Ozolins J. Helminth parasites of the wolf Canis lupus from Latvia. J Helminthol 2009; 83: 63-68. https://doi.org/10.1017/S0022149X08123860
  2. Lahmar S, Sarciron ME, Rouiss M, Mensi M. Echinococcus granulosus and other intestinal helminths in semi-stray dogs in Tunisia: infection and re-infection rates. Tunis Med 2008; 86: 657-664.
  3. Chen YF, Xie XP, Sun SP. The existing state and development strategy of rabbits production in China. Modern Agricult 2010; 6-7.
  4. Zhou YX, Du AF, Zhang XJ, Wu YM, Tong FY, Wu GY. Research of harmfulness of Cysticercus pisiformis in rabbit. J. Zhejiang Agricult Sci 2008; 3: 372-373.
  5. Saarma U, Jogisalu I, Moks E, Varcasia A, Lavikainen A, Oksanen A, Simsek S, Andresiuk V, Denegri G, Gonzalez LM, Ferrer E, Garate T, Rinaldi L, Maravilla P. A novel phylogeny for the genus Echinococcus, based on nuclear data, challenges relationships based on mitochondrial evidence. Parasitology 2009; 136: 317-328. https://doi.org/10.1017/S0031182008005453
  6. Gasser RB, Zhu X, McManus DP. NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda). Int J Parasitol 1999; 29: 1965-1970. https://doi.org/10.1016/S0020-7519(99)00153-8
  7. Campbell G, Garcia HH, Nakao M, Ito A, Craig P. Genetic variation in Taenia solium. Parasitol Int 2006; 55: 121-126. https://doi.org/10.1016/j.parint.2005.11.056
  8. Nakao M, Xiao N, Okamoto M, Yanagida T, Sako Y, Ito A. Geographic pattern of genetic variation in the fox tapeworm Echinococcus multilocularis. Parasitol Int 2009; 58: 384-389. https://doi.org/10.1016/j.parint.2009.07.010
  9. Nakao M, Okamoto M, Sako Y, Yamasaki H, Nakaya K, Ito A. A phylogenetic hypothesis for the distribution of two genotypes of the pig tapeworm Taenia solium worldwide. Parasitology 2002; 124: 657-662.
  10. Martinez-Hernandez F, Jimenez-Gonzalez DE, Chenillo P, Alonso- Fernandez C, Maravilla P, Flisser A. Geographical widespread of two lineages of Taenia solium due to human migrations: can population genetic analysis strengthen this hypothesis?. Infect Genet Evol 2009; 9: 1108-1114. https://doi.org/10.1016/j.meegid.2009.09.005
  11. Sambrook J, Fristsch EF, Maniatis T. Molecular Cloning. A Laboratory Manual. 3 rd ed. New York, USA. Cold Spring Harbor Labtetory Press. 2002, p 463-470.
  12. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003; 19: 2496-2497. https://doi.org/10.1093/bioinformatics/btg359
  13. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 2007; 1: 47-50.
  14. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999; 16: 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  15. Tamura k, Dudley J, Nei M, Kumar S. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  16. Jia WZ, Yan HB, Guo AJ, Zhu XQ, Wang YC, Shi WG, Chen HT, Zhan F, Zhang SH, Fu BQ, Littlewood DT, Cai XP. Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis: additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics 2010; 11: 447. https://doi.org/10.1186/1471-2164-11-447
  17. Liu GH, Lin RQ, Li MW, Liu W, Liu Y, Yuan ZG, Song HQ, Zhao GH, Zhang KX, Zhu XQ. The complete mitochondrial genomes of three cestode species of Taenia infecting animals and humans. Mol Biol Rep 2011; 38: 2249-2256. https://doi.org/10.1007/s11033-010-0355-0
  18. Neigel JE, Avise JC. Application of a random walk model to geographic distribution of animal mitochondrial DNA variation. Genetics 1993; 135: 1209-1220.
  19. Holsinger KE, Weir BS. Genetics in geographically structured populations: defining, estimating and interpreting F(ST). Nat Rev Genet 2009; 10: 639-650. https://doi.org/10.1038/nrg2611
  20. Hamrick JL, Godt MJW, Sherman-Broyles SL. Gene flow among plant populations: evidence from genetic markers. In Hoch PC, Stephnon AG, eds, Experimental and Molecular Approaches to Plant Biosystematics. Missouri, USA. Missouri Botanical Garden. 1995, p 215-232.
  21. Barbosa AM, Thode G, Real R, Feliu C, Vargas JM. Phylogeographic triangulation: using predator-prey-parasite interactions to infer population history from partial genetic information. PLoS One 2012; 7: e50877. https://doi.org/10.1371/journal.pone.0050877
  22. Jefferies R, Shaw SE, Willesen J, Viney ME, Morgan ER. Elucidating the spread of the emerging canid nematode Angiostrongylus vasorum between Palaearctic and Nearctic ecozones. Infect Genet Evol 2010; 10: 561-568. https://doi.org/10.1016/j.meegid.2010.01.013
  23. Baldwin RE, Rew MB, Johansson ML, Banks MA, Jocobson KC. Population structure of three species of Anisakis nematodes recovered from pacific sardines (Sardinops sagax) distributed throughout the California current system. J Parasitol 2011; 97: 545-554. https://doi.org/10.1645/GE-2690.1

피인용 문헌

  1. Genetic Structure Analysis of Spirometra erinaceieuropaei Isolates from Central and Southern China vol.10, pp.3, 2013, https://doi.org/10.1371/journal.pone.0119295
  2. Molecular Characterization of Enterocytozoon bieneusi in Domestic Rabbits (Oryctolagus cuniculus) in Northeastern China vol.54, pp.1, 2016, https://doi.org/10.3347/kjp.2016.54.1.81
  3. Theileria, Hepatozoon and Taenia infection in great gerbils (Rhombomys opimus) in northwestern China vol.15, pp.None, 2013, https://doi.org/10.1016/j.ijppaw.2021.04.002
  4. Molecular Confirmation of Massive Taenia pisiformis Cysticercosis in One Rabbit in Poland vol.10, pp.8, 2013, https://doi.org/10.3390/pathogens10081029
  5. Spatiotemporal monitoring of Cysticercus pisiformis in European wild rabbit (Oryctolagus cuniculus) in Mediterranean ecosystems in southern Spain vol.197, pp.None, 2013, https://doi.org/10.1016/j.prevetmed.2021.105508