DOI QR코드

DOI QR Code

Synfuel Production Technology : Catalyst for Fischer-Tropsch Synthesis

합성액화연료 생산 기술: Fischer-Tropsch 합성용 촉매

  • Park, Jo-Yong (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority)
  • 박조용 (한국석유관리원 석유기술연구소)
  • Received : 2013.12.10
  • Accepted : 2013.12.30
  • Published : 2013.12.30

Abstract

Fischer-Tropsch synthesis (FTS) converts synthesis gas (CO and $H_2$) into longer chain hydrocarbons by a surface polymerization reaction. Cobalt- or iron-based catalysts normally show excellent activity for syngas conversion to petroleum products leading to super clean diesel fuels. The catalytic activities of the catalysts in FTS depend on the number of active sites on the surface. The number of active site was determined by the active metal particle size, loading amount, reduction degree and support-active metal interaction. The investigation adopts new methodology in preparing FT catalyst, which contains the controlled synthesis of active metal. The main focus of this paper is to give an overview of the types of catalysts, also including their preparation and reduction; the types of FT reactors; and also including the reaction conditions.

피셔-트롭쉬 합성 반응은 촉매 표면에서 합성가스 (CO+$H_2$)를 탄화수소로 전환하는 반응이다. 코발트 또는 철계 촉매는 친환경적인 디젤 연료를 생산할 수 있고 합성가스의 전환율이 높은 촉매로 알려져 있다. 피셔-트롭쉬 반응에 사용되는 촉매의 활성은 촉매 표면에서의 활성점에 의존적이다. 활성점은 활성 물질의 크기, 담지량, 환원율, 지지체와 활성물질의 상호작용에 의해 결정된다. FT 촉매 제조 방법으로 활성물질의 크기를 조절하는 등의 새로운 방법들이 시도되고 있다. 여기에서는 촉매의 제조방법과 환원 특성을 비롯한 촉매의 형태와 반응 조건을 포함한 반응기 형태에 대해 알아보겠다.

Keywords

References

  1. A. de Llerk and E. Furimsky, "Catalysis in the Refining of Fischer-Tropsch Syncrude", RSC Catalysis Series Book.
  2. A. Steyberg and M. Dry, "Fischer-Tropsch Technology", Elsevier, (2004).
  3. R. Oukacia, A.H. Singletona and J.G. Goodwin Jr., "Comparison of Patented Co F-T Catalysts using Fixed-Bed and Slurry Bubble Column Reactors", Appl. Catal. A: General, 186, 129 (1999). https://doi.org/10.1016/S0926-860X(99)00169-6
  4. G.L. Bezemer, J.H. Bitter, H.P.C.E. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, A.J. van Dillen and K.P. de Jong, "Cobalt Particle Size Effects in the Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts", J. Am. Chem. Soc., 128, 3956 (2006). https://doi.org/10.1021/ja058282w
  5. Y.J. Lee, J.Y. Park, K.W. Jun, J.W. Bae and P.S.S. Prasad, "Controlled Nanocrystal Deposition for Higher Degree of Reduction in $Co/Al_2O_3$ Catalyst", Catal. Lett., 130, 198 (2009). https://doi.org/10.1007/s10562-009-9862-9
  6. J.P. den Breejen, P.B. Radstake, G.L. Bezemer, J.H. Bitter, V. Froseth, A. Holmen, and K.P. de Jong, "On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis", J. Am. Chem. Soc., 131, 7197 (2009). https://doi.org/10.1021/ja901006x
  7. R.A. van Santen, "Complementary Structure Sensitive and Insensitive Catalytic Relationships", Acc. Chem. Res., 42, 57 (2009). https://doi.org/10.1021/ar800022m
  8. J.Y. Park, Y.J. Lee, P.R. Karandikar, K.W. Jun, K.S. Ha and H.G. Park, "Fischer-Tropsch Catalysts Deposited with Size-Controlled Co3O4 Nanocrystals: Effect of Co Particle Size on Catalytic Activity and Stability", Appl. Catal. A: General, 411, 15 (2012).
  9. J.Y. Park, Y.J. Lee, P.K. Khanna, K.W. Jun, J.W. Bae and Y.H. Kim, "Alumina-Supported Iron Oxide Nanoparticles as Fischer-Tropsch Catalysts: Effect of Particle Size of Iron Oxide", J. Mol. Catal. A: Chem., 323, 84 (2010). https://doi.org/10.1016/j.molcata.2010.03.025
  10. M. Kraum and M. Baerns, "Fischer- Tropsch Synthesis: the Influence of Various Cobalt Compounds Applied in the Preparation of Supported Cobalt Catalysts on their Performance", Appl. Catal. A: General, 186, 189 (1999). https://doi.org/10.1016/S0926-860X(99)00172-6
  11. E. Rytter, S. Eri, T.H. Skagseth, D. Schanke, E. Bergene, R. Myrstad, and A. Lindvag, "Catalyst Particle Size of Cobalt/Rhenium on Porous Alumina and the Effect on Fischer-Tropsch Catalytic Performance", Ind. Eng. Chem. Res., 46, 9032 (2007). https://doi.org/10.1021/ie071136+
  12. W. Ma, G. Jacobs, R.A. Keogh, D.B. Bukur and B.H. Davis, "Fischer-Tropsch Synthesis: Effect of Pd, Pt, Re, and Ru Noble Metal Promoters on the Activity and Selectivity of a 25%Co/$Al_{2}O_{3}$ Catalyst", Appl. Catal. A: General, 437, 1 (2012).
  13. C. Yang, H. Zhao, Y. Hou and D. Ma, "$Fe_5C_2$ Nanoparticles: A Facile Bromide-Induced Synthesis and as an Active Phase for Fischer-Tropsch Synthesis", J. Am. Chem. Soc., 134, 15814 (2012). https://doi.org/10.1021/ja305048p
  14. S.R. Deshmukh, A. Lee, Y. Tonkovich , K.T. Jarosch , L. Schrader , S.P. Fitzgerald , D.R. Kilanowski , J.J. Lerou , and T.J. Mazanec, "Scale-Up of Microchannel Reactors For Fischer-Tropsch Synthesis", Ind. Eng. Chem. Res., 49, 10883 (2010). https://doi.org/10.1021/ie100518u
  15. J.Y. Park, Y.J. Lee, P.R. Karandikar, K.W. Jun, J.W. Bae and Ha, "Ru Promoted Cobalt Catalyst on ${\gamma}-Al_2O_3$ Support:Influence of Pre-Synthesized Nanoparticles on Fischer-Tropsch Reaction", J. Mol. Catal. A: Chem., 344, 153 (2011).
  16. L. Liu, G. Sun, C. Wang, J. Yang, C. Xiao, H. Wang, D. Ma and Y. Kou, "Aqueous Phase Fischer-Tropsch Synthesis in a Continuous Flow Reactor", Catal. Today, 183, 136 (2012). https://doi.org/10.1016/j.cattod.2011.09.040
  17. C. Mohandas, M.K. Gnanamani, G. Jacobs, W. Ma, Y. Ji, S. Khalid and B.H. Davis, "FischerTropsch Synthesis: Characterization and Reaction Testing of Cobalt Carbide", ACS Catal., 1, 1581 (2011). https://doi.org/10.1021/cs200236q
  18. H. Karaca, O.V. Safonova, S. Chambrey, P. Fongarland, P. Roussel, A. Griboval-Constant, M. Lacroix and A.Y. Khodakov, "Structure and Catalytic Performance of Pt-Promoted Alumina- Supported Cobalt Catalysts under Realistic Conditions of Fischer-Tropsch Synthesis", J. Catal., 277, 14 (2011). https://doi.org/10.1016/j.jcat.2010.10.007
  19. S.M. Kim, Y.J. Lee, K.W. Jun, J.Y. Park and H.S. Potdar, "Synthesis of Thmo-stable High Surface Area Alumina Powder from Sol--gel Derived Boehmite", Mat. Chem. Phys., 104, 56 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.044
  20. M.K. Gnanamani, G. Jacobs, W.D. Shafer and B.H. Davis, "Fischer-Tropsch Synthesis: Activity of Metallic Phases of Cobalt Supported on Silica", Catal. Today, 215, 15 (2013).
  21. M. Rotan, E. Rytter, M.A. Einarsrud, T. Grande, "Solid State Mechanism Leading to Enhanced Attrition Resistance of Alumina Based Catalyst Supports for Fischer- Tropsch Synthesis", J. Eur. Ceram. Soc., 33, 1 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.010
  22. O. Borg, N. Hammer, S. Eri, O.A. Lindvag, R. Myrstad, E.A. Blekkan, M. Ronning, E. Rytter, A. Holmen, "Fischer- Tropsch synthesis over un-promoted and Re-promoted ${\gamma}-Al_2O_3$ supported cobalt catalysts with different pore sizes", Catal. Today, 142, 70 (2009). https://doi.org/10.1016/j.cattod.2009.01.012
  23. A.Y. Khodakov, "Fischer-Tropsch Synthesis: Relations Between Structure of Cobalt Catalysts and their Catalytic Performance", Catal. Today, 144, 251 (2009). https://doi.org/10.1016/j.cattod.2008.10.036
  24. Y. Liu, B. de Tymowski, F. Vigneron, I. Florea, O. Ersen, C. Meny, P. Nguyen, C. Pham, F. Luck and C. Pham-Huu, "Titania-Decorated Silicon Carbide-Containing Cobalt Catalyst for Fischer-Tropsch Synthesis", ACS Catal., 3, 393 (2013). https://doi.org/10.1021/cs300729p
  25. Y. Zhu, Y. Ye, S. Zhang, M.E. Leong and F. Tao, "Synthesis and Catalysis of Location-Specific Cobalt Nanoparticles Supported by Multiwall Carbon Nanotubes for Fischer-Tropsch Synthesis", Langmuir, 28, 8275 (2012). https://doi.org/10.1021/la300607k
  26. J.F. Bengoa, A.M. Alvarez, M.V. Cagnoli, N.G. Gallegos and S.G. Marchetti, "Influence of Intermediate Iron Reduced Species in Fischer-Tropsch Synthesis Using Fe/C Catalysts, Appl. Catal. A: General, 325, 68 (2007). https://doi.org/10.1016/j.apcata.2007.03.012
  27. A. Karimi, B. Nasernejad, A.M. Rashidi, A. Tavasoli and M. Pourkhalil, "Functional Group Effect on Carbon Nanotube (CNT)-supported Cobalt Catalysts in Fischer-Tropsch Synthesis Activity, Selectivity and Stability", Fuel, 117, 1045 (2014). https://doi.org/10.1016/j.fuel.2013.10.014
  28. S.J. Park, S.M. Kim, M.H. Woo, J.W. Bae, K.W. Jun and K.S. Ha, "Effects of Titanium Impurity on Alumina Surface for the Activity of $Co/Ti-Al_2O_3$ Fischer- Tropsch Catalyst", Appl. Catal. A: General, 419, 148 (2012).
  29. J.C. Park, N.S. Roh, D.H. Chun, H. Jung and J.-I. Yang, "Cobalt Catalyst Coated Metallic Foam and Heat-exchanger Type Reactor for Fischer-Tropsch Synthesis", Fuel Process. Tech., 119, 60 (2014). https://doi.org/10.1016/j.fuproc.2013.10.008
  30. A.N. Pour, S.M.K. Shahri, H.R. Bozorgzadeh, Y. Zamani, A. Tavasoli and M.A. Marvast, "Effect of Mg, La and Ca Promoters on the Structure and Catalytic Behavior of Iron-based Catalysts in Fischer -. Tropsch Synthesis", Appl. Catal. A: General, 348, 201 (2008). https://doi.org/10.1016/j.apcata.2008.06.045
  31. M.S. Shin, N. Park, M.J. Park, J.Y. Cheon, J.K. Kang, K.W. Jun and K.S. Ha, "Modeling a Channel-type Reactor with a Plate Heat Exchanger for Cobalt-based Fischer-Tropsch Synthesis", Fuel Process. Tech., 118, 235 (2014). https://doi.org/10.1016/j.fuproc.2013.09.006
  32. A.D. Fronzo, C. Pirola, A. Comazzi, F. Galli, C.L. Bianchi, A.D. Michele, R. Vivani, M. Nocchetti, M. Bastianini and D.C. Boffito, "Co-based Hydrotalcites as New Catalysts for the Fischer-Tropsch Synthesis Process", Fuel, 119, 62 (2014). https://doi.org/10.1016/j.fuel.2013.11.014
  33. D.B. Bukur and X. Lang, "Highly Active and Stable Iron Fischer-Tropsch Catalyst for Synthesis Gas Conversion to Liquid Fuels", Ind. Eng. Chem. Res., 38, 3270 (1999). https://doi.org/10.1021/ie990028n
  34. S. Li, G.D. Meitzner and E. Iglesia, "Structure and Site Evolution of Iron Oxide Catalyst Precursors during the Fischer-Tropsch Synthesis", J. Phys. Chem. B, 105, 5743 (2001).
  35. D. Mahajan., P. Gutlich and U. Stumm, "The Role of Nano-sized Iron Particles in Slurry Phase Fischer-.Tropsch Synthesis", Catal. Comm., 4, 101 (2003). https://doi.org/10.1016/S1566-7367(03)00002-5
  36. N. Lohitharn, J.G. Goodwin Jr. and E. Lotero, "Fe-based Fischer--Tropsch Synthesis Catalysts Containing Carbide-forming Transition Metal Promoters", J. Catal., 255, 104 (2008). https://doi.org/10.1016/j.jcat.2008.01.026