DOI QR코드

DOI QR Code

Underwater Acoustic Communication Channel Modeling Regarding Magnitude Fluctuation Based on Ocean Surface Scattering Theory and BELLHOP Ray Model and Its Application to Passive Time-reversal Communication

해수면에 의한 신호 응답 강도의 시변동성 특성이 적용된 벨홉 기반의 수중음향 통신 채널 모델링 및 수동 시역전 통신 응용

  • 김준석 (연세대학교 전기전자공학과) ;
  • 고일석 (인하대학교 전자공학과) ;
  • 이용식 (연세대학교 전기전자공학과)
  • Received : 2012.09.28
  • Accepted : 2013.01.07
  • Published : 2013.03.31

Abstract

This paper represents generation of time-varying underwater acoustic channels by performing scattering simulation with time-varying ocean surface and Kirchhoff approximation. In order to estimate the time-varying ocean surface, 1D Pierson-Moskowitz ocean power spectrum and Gaussian correlation function were used. The computed scattering coefficients are applied to the amplitudes of each impulse of BELLHOP simulation result. The scattering coefficients are then compared with measured doppler spectral density of signal components which were scattered from ocean surface and the correlation time used in the Gaussian correlation function was estimated by the comparison. Finally, bit-error-rate and channel correlation simulations were performed with the generated time-varying channel based on passive time-reversal communication scenario.

본 논문은 시변 해수면을 생성하고 KA(Kirchhoff Approximation) 기반으로 산란계수를 시뮬레이션하여 결정론적 모델인 벨홉 임펄스 응답에 적용함으로써 시변동성 채널을 생성한다. 1D Pierson-Moskowitz 해수면 스펙트럼과 가우시안 상관 함수를 이용하여 일정한 속도로 변화하는 시 변동성 해수면을 사용하였다. 산란계수는 벨홉의 채널 임펄스 응답의 신호 응답 강도에 적용한다. 실제 실측 데이터에서 해수면 반사 성분을 분리하여 시 변동성 특성에 대한 도플러 파워 스펙트럼을 구하고, 해수면 산란계수 시뮬레이션의 결과와 비교하여 해수면에 사용된 가우시안 상관 함수의 상관 시간을 추정하였다. 최종적으로 생성된 시변동성 채널에 수동 시역전 통신 시나리오를 가정하고 기법을 적용하여 비트에러율 및 채널응답 상관계수 시뮬레이션을 수행하였다.

Keywords

References

  1. D. Rouseff, D. R. Jackson, W. L. J. Fox, C. D. Jones, J. A. Ritcey, and D. R. Dowling, "Underwater acoustic communication by passive-phase conjugation: theory and experimental results," IEEE J. Ocean. Eng. 26, 821-831 (2001). https://doi.org/10.1109/48.972122
  2. A. Song, M. Badiey, A. E. Newhall, J. F. Lynch, H. A. DeFerrari, and B. G. Katsnelson, "Passive time reversal acoustic communications through shallow-water internal waves," IEEE J. Ocean. Eng. 35, 756-765 (2010). https://doi.org/10.1109/JOE.2010.2060530
  3. M. Patzold, Mobile Fading Channels (J. Wiley, Chichester, 2002).
  4. P. A. van Walree, T. Jenserud, and M. Smedsrud, "A discrete-time channel simulator driven by measured scattering functions," IEEE J. Sel. Areas Commun. 26, 1628-1637 (2008). https://doi.org/10.1109/JSAC.2008.081203
  5. A. Radosevic, J. Proakis, and M. Stojanovic, "Statistical characterization and capacity of shallow water acoustic channels," OCEANS 2009-Europe, 1-8 (2009).
  6. M. Porter et al., Bellhopcode, http://oalib.hlsresearch.com/ Rays/index.html.
  7. B. Tomasi, G. Zappa, K. McCoy, P. Casari, and M. Zorzi, "Experimental study of the space-time properties of acoustic channels for underwater communications," OCEANS 2010-Sydney, 1-9 (2010).
  8. M. Siderius and M. B. Porter, "Modeling broadband ocean acoustic transmissions with time-varying sea surfaces," J. Acoust. Soc. Am. 124, 137-150 (2008). https://doi.org/10.1121/1.2920959
  9. H. Harada and R. Prasad, Simulation and Software Radio for Mobile Communications (Artech House, Norwood, 2002).
  10. W. J. Pierson and L. Moskowitz, "A proposed spectral form for fully developed wind seas based on the similarity theory of s. a. kitaigorodskii," J. Geophys. Res. 69, 5181-5190 (1964). https://doi.org/10.1029/JZ069i024p05181
  11. L. Tsang, J. Kong, and K. Ding, Scattering of Electromagnetic Waves, Theories and Applications (John Wiley & Sons, New York, 2000).
  12. L. Tsang, Scattering of Electromagnetic Waves: Numerical simulations (John Wiley & Sons, New York, 2001).
  13. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, 1987).
  14. G. F. Edelmann, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song and T. Akal, "Underwater acoustic communication using time reversal," OCEANS 2001 4, 2231-2235 (2001).
  15. J. G. Proakis, Digital Communications (McGraw-Hill, Boston, 2001).
  16. I.-S. Koh, "Time-reversal Channel Capacity in Rayleigh and Recean Environment," (in Korean) J. Korea Info. Commun. Soc. 34, 243-250 (2009).