DOI QR코드

DOI QR Code

Prevalence and Antimicrobial Resistance of Enterococus faecalis and Enterococcus faecium Isolated from Beef, Pork, Chicken and Sashimi

시판 축산물 및 수산물에서 Enterococcus faecalis와 Enterococcus faecium 분포 및 항생제 감수성에 관한 연구

  • Sung, Chang-Hyun (KU Center for Food Safety, Konkuk University) ;
  • Chon, Jung-Whan (KU Center for Food Safety, Konkuk University) ;
  • Kwak, Hyo-Sun (Foodborne Disease Prevention and Surveillance Division, Korea Food and Drug Administration) ;
  • Kim, Hyunsook (Department of Nutrition, University of California(UC DAVIS)) ;
  • Seo, Kun-Ho (KU Center for Food Safety, Konkuk University)
  • 성창현 (건국대학교 KU 식품안전연구센터) ;
  • 천정환 (건국대학교 KU 식품안전연구센터) ;
  • 곽효선 (식품의약품안전청 식중독예방관리과) ;
  • 김현숙 (캘리포니아 대학교 영양학과) ;
  • 서건호 (건국대학교 KU 식품안전연구센터)
  • Received : 2012.06.12
  • Accepted : 2013.02.18
  • Published : 2013.02.28

Abstract

In this study, a total of 256 samples of retail raw meats (beef, pork and chicken) and sashimi were investigated for the presence of Enterococcus faecalis and Enterococcus faecium. We isolated a total of 117 E. faecalis and E. faecium from the samples, with contamination rates ranging from 18.8% for sashimi samples to 68.8% of chicken samples. E. faecalis was the predominant species recovered from all of the retail raw meats beef (42.2%), pork (42.2%), chicken (65.6%) and sashimi (12.5%). Among 117 isolates, 61 isolates (52.1%) were resistant to tetracycline, 32 isolates (27.4%) were resistant to erythromycin, 23 isolates (19.7%) were resistant to chloramphenicol, 16 isolates (13.7%) were resistant to ripampin, 10 isolates (8.5%) were resistant to gentamycin, 9 isolates (7.7%) were resistant to ciprofloxacin and 1 isolate (0.9%) was resistant to ampicillin and penicillin G. No resistance to amoxicillin + clavulanic acid and vancomycin was observed. Although no strain was resistant to vancomycin, the vanB gene was observed in 9 of 117 of Enterococcus (7.7%) demonstrating potential risk of vancomycin-resistant Enterococcus (VRE). Our results indicate that E. faecalis and E. faecium were highly prevalent in retail raw meats, but most strains were sensitive to tested antibiotics.

본 연구에서는 서울시내 256곳의 판매점에서 구입한 축산물 및 수산물에서 Enterococcus faecalis 와 Enterococcus facium을 분리하였으며 분리된 균주의 항생제 내성양상과 vancomycin 내성 유전자 보유여부를 검증하였다. 총 256개 시료 중 117개에서 E. faecalis(40.6%)와 E. faecium(5.1%)가 검출되어 45.7%의 분리율을 나타내었다. 축산물은 192개 중 105개 균주가 분리되어 54.7%의 분리율을 나타내었는데 닭고기에서 가장 높은 68.8%의 분리율을, 돼지고기에서 50.0%의 분리율을, 쇠고기에서 45.3%의 분리율을 나타내었다. 횟감어류에서는 18.8%의 분리율을 나타내었다. 분리된 균주에 대한 항생제 내성 양상은 10종의 항생제 디스크를 이용하여 검증하였다. Tetracycline의 내성률이 52.1%로 가장 높았으며, erythromycin의 내성률이 27.4%로 두 번째로 높게 나타났다. Ampicillin과 penicillin는 1개의 균주를 제외하고는 모두 감수성을 보였으며, amoxicillin & clavulanic acid에는 모든 균주가 감수성을 보였다. Vancomycin에는 모든 균주가 감수성을 보여 VRE는 검출되지 않았다. 분리된 균주의 vancomycin 내성유전자의 검출은 multiplex PCR을 이용하여 vanA gene과 vanB gene 보유여부를 확인하였다. vanA gene이 검출된 균주는 없었으나, vancomycin에 감수성을 나타내던 9개의 균주에서 vanB gene이 검출되어 VRE균 출현의 잠재적인 가능성을 보여주었다.

Keywords

References

  1. Cauwerts, K., Decostere, A., De Graef, E. M., Haesebrouck, F., and Pasmans, F. (2007) High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm(B) gene. Avian Pathol. 36, 395-399. https://doi.org/10.1080/03079450701589167
  2. Cha, C. H., An, H. K., and Kim, J. U. (2010) Detection of vancomycin-resistant enterococci using multiplex real-time PCR assay and melting curve analysis. Korean J. Lab. Med. 30, 138-146. https://doi.org/10.3343/kjlm.2010.30.2.138
  3. Chadwick, P. R., Woodford, N., Kaczmarski, B., Gray, S., Barrell, R. A., and Oppenheim, B. A. (1996) Glycopeptide resistant enterococci isolated from uncooked meat. J. Antimicrob. Chemother. 38, 908-909. https://doi.org/10.1093/jac/38.5.908
  4. De Fatima Silva Lopes, M., Ribeiro, T., Abrantes, M., Figueiredo Marques, J. J., Tenreiro, R., and Crespo, M. T. (2005) Antimicrobial resistance profiles of dairy and clinical isolates and type strains of enterococci. Int. J. Food Microbiol. 103, 191-198. https://doi.org/10.1016/j.ijfoodmicro.2004.12.025
  5. Franz, C. M., Holzapfel, W. H., and Stiles, M.E. (1999) enterococci at the crossroads of food safety. Int. J. Food Microbiol. 47, 1-24. https://doi.org/10.1016/S0168-1605(99)00007-0
  6. Ham, H. J. (2007) E. faecalis and E. faecium isolated in dried marine products. J. Fd. Hyg. Safety 22, 294-299.
  7. Harwood, V. J., Brownell, M., Perusek, W., and Whitlock, J. E. (2001) Vancomycin-resistant Enterococcus spp. isolated from wastewater and chicken feces in the United States. Appl. Environ. Microbiol. 67, 4930-4933. https://doi.org/10.1128/AEM.67.10.4930-4933.2001
  8. Kang, T. M., Cho, S. K., and Park, J. H. (2008) Antibiotic resistances of enterococcus isolated from salad and sprout. Kor. J. Microbiol. Biotechnol. 36, 142-148.
  9. Katie, F. and Carol, P. (2009) The ecology, epidemiology and virulence of Enterococcus. Microbiology 155, 1749-1757. https://doi.org/10.1099/mic.0.026385-0
  10. Kim, A., Cho, M. I., Her, M., Jung, B. Y., Lim, S. K., Jung, S. C., Song, C. H., and Lee, J. Y. (2011) Quinupristin/dalfopristin resistance patterns in Enterococcus faecium isolated from chicken farms in South Korea. Kor. J. Vet. Publ. Hlth. 35, 91-96.
  11. Kim, S. H., Kim, J. S., and Park, J. H. (2007) Antibiotic resistance of Enterococcus isolated from the processed grain foods, saengsik and sunsik. Food Sci. Biotechnol. 16, 470-476.
  12. Klein, G., Pack, A., and Reuter, G. (1998) Antibiotic resistance patterns of enterococci and occurrence of vancomycin-resistant enterococci in raw minced beef and pork in Germany. Appl. Environ. Microbiol. 64, 1825-1830.
  13. Kummerer, K. (2003) Significance of antibiotics in the environment. J. Antimicrob. Chemother. 52, 5-7. https://doi.org/10.1093/jac/dkg293
  14. Lee, H. I., Lee, S. J., and Choi, S. S. (2009) Antimicrobial resistance patterns of enterococci spp. isolated from raw milk samples. J. Fd. Hyg. Safety 24, 373-377.
  15. Mandel, G. L., Bennett, J. E., Dolin, R., and Mandell, D. (1995) Streptococcus bovis, and Leuconostoc spp. In: A principles and practice of infectious disease. Mcellering, R. C. (ed) Churchill Living Stone, NY, pp. 1826-1835.
  16. NCCLS (National Committee for Clinical Laboratory Standards) (2004) Performance standards for antimicrobial susceptibility testing. NCCLS document M100-S14. National Committee for Clinical Laboratoy Standards. Wayne, PA., p.65.
  17. Noble, W. C., Virani, Z., and Cree, R. G. (1992) Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS. Microbiol. Lett. 93, 195-198. https://doi.org/10.1111/j.1574-6968.1992.tb05089.x
  18. Oh, E. G., Son, K. T., Yu, H. S., Kim, J. H., Lee, T. S., and Lee, H. J. (2008) Antimicrobial susceptibility pattern of Enterococcus faecalis and E. faecium from fish farms in the southern coast of Korea. J. Kor. Fish Soc. 41, 435-439. https://doi.org/10.5657/kfas.2008.41.6.435
  19. Park, H. S., Chung, H. K., and Lee, H. H. (1992) Antimicrobial susceptibility of Enterococcus species isolated from clinical materials. J. Korean Soc. Microbiol. 27, 103-114.
  20. Park, I. J., Lee, W. G., Lee, H., Yong, D., Lee, K., Kim, E. C., Jeong, S. H., Park, Y. J., Choi, T. Y., Uh, Y., Shin, J. H., Lee, J., Ahn, J. Y., Lee, S. H., and Woo, G. J. (2006) Mechanism of vanB phenotype in vancomycin-resistant enterococci carrying vanA gene. Korean J. Lab. Med. 26, 412-417. https://doi.org/10.3343/kjlm.2006.26.6.412
  21. Pavia, M., Nobile, C. G., Salpietro, L., and Angelillo, I. F. (2000) Vancomycin resistance and antibiotic susceptibility of enterococci in raw meat. J. Food Prot. 63, 912-915. https://doi.org/10.4315/0362-028X-63.7.912
  22. Quednau, M., Ahrn, S., Petersson, A. C., and Molin, G. (1998) Antibiotic-resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. J. Appl. Microbiol. 84, 1163-1170. https://doi.org/10.1046/j.1365-2672.1998.00463.x
  23. Schlefer, K. H. and Kilpper-Balz, R. (1987) Molecular and chemotaxonomic approach to the classification of streptococci, enterococci and lactococci. Rev. Syst. Appl. Microbiol. 10, 1-18. https://doi.org/10.1016/S0723-2020(87)80002-4
  24. Sood, S., Malhotra, M., Das, B. K., and Kapil, A. (2008) Enterococcal infections and antimicrobial resistance. Indian J. Med. Res. 128, 111-121.
  25. Sung, C. H., Cheon, J. H., Hyeon, J. Y., Hwang, I. G., Kwak, H. S., Yoon, S. H., Lee, J. S., Chung, Y. H., Song, K. Y., and Seo, K. H. (2010) Prevalence and antimicrobial resistance of Vibrio parahaemolyticus isolated from raw fishes. Kor. J. Vet. Publ. Hlth. 34, 197-202.
  26. Tailer, S. A. N., Bailey, E. M., and Rybak, M. J. (1993) Enterococcus, an emerging pathogen. Ann. Pharmacother. 27, 1231-1242. https://doi.org/10.1177/106002809302701014

Cited by

  1. Monitoring of Antimicrobial Resistance and Genetic Analysis of Enterococcus spp. Isolated from Beef, Pork, Chicken and Fish in Korea vol.29, pp.3, 2014, https://doi.org/10.13103/JFHS.2014.29.3.228
  2. Contamination Level of Hygiene Indicator and Prevalence of Foodborne Pathogens in Retail Beef in Parallel with Market Factor vol.38, pp.6, 2018, https://doi.org/10.5851/kosfa.2018.e57
  3. 제주지역 양식 넙치(Paralichthys olivaceus)에서 분리한 어병세균 내 Erythromycin 내성 유전자 분석 vol.51, pp.4, 2013, https://doi.org/10.5657/kfas.2018.0397