DOI QR코드

DOI QR Code

Optimization of Illite Polytype Quantification Method

일라이트 폴리타입 정량분석법의 최적화

  • Chung, Donghoon (Department of Earth System Sciences, Yonsei University) ;
  • Song, Yungoo (Department of Earth System Sciences, Yonsei University) ;
  • Kang, Il-Mo (Korea Institute of Geoscience and Mineral Resources) ;
  • Park, Chang-Yoon (Department of Earth System Sciences, Yonsei University)
  • 정동훈 (연세대학교 지구시스템과학과) ;
  • 송윤구 (연세대학교 지구시스템과학과) ;
  • 강일모 (한국지질자원연구원) ;
  • 박창윤 (연세대학교 지구시스템과학과)
  • Received : 2013.01.29
  • Accepted : 2013.02.16
  • Published : 2013.02.28

Abstract

We proposed the revised full-pattern-fitting method of illite polytype quantification with background correction and scale factor correction of WILDFIRE(C) simulated pattern, and R% value ((${\sum}$|simulated-measured|/simulated)/ $n{\times}100$) calculation, and then verified the reliability of this method by applying for the test sample ($2M_1$:1M$$\frac{._-}{.}$$1:1), and by comparing the result with Grathoff and Moore method (1996). We confirmed that the proposed method showed the error range of less than 3.6%, which is much lower than the previous full-pattern-fitting methods, in spite of the impurities of the test sample. In the comparison with Grathoff and Moore method for 2 tested samples, we obtained the relatively higher $2M_1$ contents using Grathoff and Moore method, whereas we obtained the reliable results with less than 10% of R% values.

본 연구에서는 배경값 보정 및 크기보정을 포함하여 오차요인을 크게 줄이고, WILDFIRE(C)를 통해 최적화된 이론값과 실측값의 일치정도 (R%, (${\sum}$|이론값-측정값|/이론값)/$n{\times}100$)를 정량값으로 제시하고, 그 값을 최소화하는 반복과정을 통해 일라이트 폴리타입 함량을 정량하는 개선된 full-pattern-fitting법을 제안하여 일정 함량을 갖는 혼합시료를 대상으로 검증하고, 기존의 Grathoff and Moore법과 비교하였다. 개선된 full-pattern-fitting법은 대상시료 내 불순물로 인한 각 폴리타입 함량오차에도 불구하고, 기존의 full-pattern-fitting법 보다 개선된 최대 3.6% 이내의 오차를 보였다. Grathoff and Moore법과의 비교에서 대상시료 모두에서 Grathoff and Moore법 적용결과는 $2M_1$ 폴리타입의 상대함량이 고평가되어 나타났으며, 이용한 피크별 매우 큰 정량값 차이를 보이는 반면, 본 연구의 개선된 full-pattern-fitting법 적용 결과는 10% 이내의 낮은 R% 값을 갖는 폴리타입 상대함량값을 보이는 것으로 나타나, 높은 신뢰도의 정량결과를 제공할 수 있음을 확인하였다.

Keywords

References

  1. Caillere, S., Henin, S. and Rautureau, M. (1981) Mineralogie des argiles. Paris: Masson. p.421.
  2. Clay Minerals Society Nomenclature Committee (1984) Clays and Clay Minerals, v.32, p.239. https://doi.org/10.1346/CCMN.1984.0320316
  3. Drits, V.A., Weber, F., Salyn, A.L. and Tsipursky, S.I. (1993) X-ray identification of one-layer illite varieties: application to the study of illites around uranium deposits of Canada. Clays and Clay Minerals, v.41, p.389-398. https://doi.org/10.1346/CCMN.1993.0410316
  4. Grathoff, G.H. and Moore, D.M. (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals, v.44, p.835-842. https://doi.org/10.1346/CCMN.1996.0440615
  5. Haines, S.H. and van der Pluijm, B.A. (2008) Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. I. Structural Geology, v.30, 525-538. https://doi.org/10.1016/j.jsg.2007.11.012
  6. Maxwell, D.T. and Hower, J. (1967) High-grade diagenesis and low-grade metamorphism of illite in the precambrian belt series. Am Mineral, v.52, p.843-857.
  7. Meunier, A. and Velde, B. (2010) Illite. Springer-Verlag Berlin, Heidelberg, p.11-17.
  8. Meunier, A. (2005) Clays. Springer-Verlag Berlin, New York, p.288.
  9. Moore, D.M. and Reynolds, R.C.Jr. (1997) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford, New York, p.330-358.
  10. Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254.
  11. Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96 n.7, p.3440-3446.
  12. Reynolds, R.C.Jr. (1963) Potassium-rubidium ratios and polytypism in illites and microclined from the clay size fractions of proterozoic carbonate rocks. Geochim Cosmochim Acta, v.27, p.1097-1112. https://doi.org/10.1016/0016-7037(63)90092-9
  13. Reynolds, R.C.Jr. and Thomson, C.H. (1993) Illite from the Postdam sandstone of New York: A probable noncentrosymmetric mica structure. Clays and Clay Minerals, v.42, p.66-72.
  14. Reynolds, R.C.Jr. (1993) Three-dimensional X-ray powder diffraction from disordered illite: Simulation and interpretation of the diffraction patterns. In: Reynolds R.C. and Walker, J.R. (eds.) Computer application to X-ray powder diffraction analysis of clay minerals. Clay Minerals Society workshop lectures, Boulder CO. v.5, p.43-78.
  15. Reynolds, R.C.Jr. (1994) WILDFIRE: a computer program for the calculation of three dimensional X-ray diffraction patterns of mica polytypes and their disordered variation. 8 Brook Rd.
  16. Tettenhorst, R.T. and Corbato, C.E. (1993) Quantitative analysis of mixtures of 1M and 2M1 dioctahedral micas by X-ray diffraction. Clays clay miner, v.41, p.45-55. https://doi.org/10.1346/CCMN.1993.0410105
  17. van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R. and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. https://doi.org/10.1038/35084053
  18. Ylagan, R.F., Pevear, D.R. and Vrolijk, P.J. (2000) Discussion of "Extracting K-Ar ages from shales: a theoretical test". Clay Minerals, v.35 p.599-604. https://doi.org/10.1180/000985500546918

Cited by

  1. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies 2017, https://doi.org/10.1016/j.jseaes.2017.08.002
  2. Episodes of brittle deformation within the Dien Bien Phu Fault zone, Vietnam: Evidence from K-Ar age dating of authigenic illite vol.695, 2017, https://doi.org/10.1016/j.tecto.2016.12.006
  3. Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.97
  4. K-Ar Dating of Fault Gouges from the Red River Fault Zone of Vietnam vol.90, pp.5, 2016, https://doi.org/10.1111/1755-6724.12808
  5. K–Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia vol.95, 2014, https://doi.org/10.1016/j.jseaes.2014.05.018
  6. Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period vol.47, pp.1, 2014, https://doi.org/10.9719/EEG.2014.47.1.29
  7. Reactivated Timings of Inje Fault since the Mesozoic Era vol.48, pp.1, 2015, https://doi.org/10.9719/EEG.2015.48.1.41