DOI QR코드

DOI QR Code

Performance Improvement Technology on a Continuous Heating Heat Pump at Frost Condition

착상조건에서 연속난방이 가능한 히트펌프 성능 향상 기술

  • Jeon, Chang-Duk (Dept. of Mechanical Engineering, Korea National University of Transportation)
  • 전창덕 (한국교통대학교 기계공학과)
  • Received : 2012.11.09
  • Accepted : 2013.02.06
  • Published : 2013.02.28

Abstract

Heat pumps come into wide use because high energy efficiency can be obtained and diverse heat sources like geothermal heat, waste heat and air are available. It is necessary for an air source heat pump to defrost in order to remove frost on the surfaces of an outdoor heat exchanger. It is impossible for continuous heating if reverse cycle operation is used as defrosting method, furthermore it causes the degradation of COP. In this study an fin-tube heat exchanger with three rows was used as an outdoor coil. One row among three rows of the heat exchanger was used like a condenser in order to remove frost on it, the others were used as evaporator to accomplish continuous heating. Each row was switched in order from a condenser to an evaporator in specified time interval. Tests were carried out during minimum 180 minutes at the defrost-heating test condition(dry bulb temperature $2^{\circ}C$, wet bulb temperature $1^{\circ}C$) described in KS C 9306. Time-averaged COP was about 20% higher than that of conventional defrosting method.

히트펌프는 에너지 효율이 높고, 지열, 폐열, 공기열 등 다양한 열원 사용이 가능하기 때문에 보급이 빠르게 확대되고 있다. 공기를 열원으로 이용하는 공랭식 히트펌프의 경우는 실외기 표면에 형성되는 서리를 제거하기 위해 제상운전이 요구된다. 일반적으로 사용하는 역사이클(reverse cycle) 제상운전 방법은 연속난방이 불가능하며 이로 인해 성능계수가 감소하는 원인이 된다. 본 연구에서는 실외기 코일용 휜-관 열교환기를 3열로 구성하고 난방과 제상이동시에 가능하도록 일정시간 간격으로 열교환기의 한 개의 열을 응축기로, 나머지 열은 증발기로 교번 운전을 수행하여 KS C 9306에 규정된 제상-난방 시험조건(건구온도 $2^{\circ}C$, 습구온도 $1^{\circ}C$)에서 최소 180분 이상 연속난방이 가능함을 실증하였으며 역사이클 제상방법을 사용하는 일반적인 히트펌프 대비 COP가 약 20% 향상됨을 알 수 있었다.

Keywords

References

  1. Y. Xia, Y. Zhong, S. Hrnjak, M. Jacobi, "Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-fin tube heat exchanger", Int. J. Refrigeration, Vol. 29, pp. 1066-1079, 2006. DOI: http://dx.doi.org/10.1016/j.ijrefrig.2006.03.005
  2. Y. S. Chang and S. Y. Oh, "An experimental study on the frost prevention of heat exchanger by spreading antifreezing solution", Proceedings of the summer spring annual conference of the KSME, pp. 2148-2153, 2005.
  3. W. Nutter and L. O'Neal, "Shortening the defrost cycle time with active enhancement within the suction-line accumulator of an air-source heat pump", International Mechanical Engineering Congress and Exposition, Vol. 36, pp. 59-68, 1996.
  4. C. D. Jeon, "Heat Exchanger", Korean Intellectual Property Office, 10-2009-0079191.
  5. C. D. Jeon, "Heat Pump", Korean Intellectual Property Office, 10-2010-0070410.
  6. KS C 9306, Air Conditioner, 2002.

Cited by

  1. An Experimental Study on the Heat Transfer Performance of an Air-Source Heat Pump Using a PCM Unit for Continuous Heating vol.27, pp.10, 2015, https://doi.org/10.6110/KJACR.2015.27.10.537