DOI QR코드

DOI QR Code

A Study for Collection and Mixing Characteristics of Particles in a Modified Cyclone Particle Collector

변형구조의 싸이클론 집진기에서 분진의 집진 및 혼합특성 연구

  • Kang, Soon-Kook (Department of Environmental Engineering, Sunmoon University)
  • 강순국 (선문대학교 환경공학과)
  • Received : 2012.11.28
  • Accepted : 2013.01.10
  • Published : 2013.01.31

Abstract

The effect on collection efficiency with 2-stage vortex finder diameter and back mixing of solid flow due to swirling intensity, turbulence eddies, wall bouncing using the residence time distribution of particle flow in a common and modified cyclone. Higher collection efficiencies of fly ash in a modified cyclone(S = 13, 15cm) are showed than common cyclone. Collection efficiency in modified cyclone was highest at 2-stage vortex finder diameter, S = 13 cm. Variances of residence time distribution and average residence times of glass bead were increased with a diameter(S) of 2-stage vortex finder due to swirling intensity and turbulence eddies. Back mixing of solid flow in a modified cyclone were increased with a gas inlet velocity and showed higher than a common cyclone.

일반과 변형구조의 싸이클론에서 입자흐름의 체류시간분포 특성을 통해 선회강도, 난류성 에디, 벽면 바운싱에 의한 고체흐름의 역혼합과 2단 선회류 약화기의 직경이 집진효율에 미치는 영향을 고찰하였다. 변형구조 싸이클론(S = 13, 15cm)에서 플라이애쉬의 집진효율이 일반 싸이클론보다 높게 나타났다. 변형구조의 싸이클론에서 집진효율은 2단 선회류 약화기의 직경(S)이 13cm에서 가장 높게 나타내었다. 글라스비드의 체류시간분포에 대한 분산과 평균 체류시간은 선회강도와 난류성 에디로 인해서 2단 선회류 약화기의 직경이 증가할수록 증가하였다. 변형구조의 싸이클론에서 고체 흐름의 역혼합은 기체 유입속도가 증가할수록 증가하였고 일반 싸이클론보다 높게 나타났다.

Keywords

References

  1. Z. Bingtao, "Prediction of Gas-Particle Seperration Eefficiency for Cyclones: A Time-off light Model", Seperation Purification Technology, pp.171-177, Vol. 85, 2012. DOI: http://dx.doi.org/10.1016/j.seppur.2011.10.006
  2. K. W. Chu, S. B. Kuang, A. B. Yu, "Particle Scale Modelling of the Multiphase Flow in a Dence Mediym Cyclone: Effect of Solid Flow Rate", Minerals Engeering, pp.34-45, Vol. 33, 2012. DOI: http://dx.doi.org/10.1016/j.mineng.2011.12.011
  3. D. Leith and W. Licht, "The Calculation Efficiency of Cyclone Type Particle Collector - A New Theoretical Appreoach", AIChE Semp. Ser., pp.196-204, Vol.68, 1972.
  4. J. T. Dietz, "Collection Efficiency of Cyclone Seperators", AIChe J., pp.888-892, Vol. 27, 1981. DOI: http://dx.doi.org/10.1002/aic.690270603
  5. S. K. Kang, T. H. Kwon, S. D. Kim, "Hydrodynamic Charactreistics of Cyclone Reactors", Powder Technology, pp.211-220, Vol. 58, 1989. DOI: http://dx.doi.org/10.1016/0032-5910(89)80116-0
  6. Z. Stegowski and J. P. Leclerc, "Determination of the Solid Seperation and Residence time Distribution in an Industrial Hydrocyclone Using Radioisotope Tracer Experiment", International Journal of Mineral Processing, pp.67-77, Vol. 66, 2002. DOI: http://dx.doi.org/10.1016/S0301-7516(02)00009-1
  7. Y. Gao, F. J. MuJJio, M. G. Ierapetritou, "A Review of the Residence Time Distribution Application in Solid Unit Operations", Powder Technology, pp.416-423, Vol. 228, 2012. DOI: http://dx.doi.org/10.1016/j.powtec.2012.05.060
  8. H. Yoshida and H. Masuda, "Model Simulation of Particle Motion in Turbulent Gas-Solid Pipe Flow", Powder Tech., pp.217-220, Vol. 26, 1980. DOI: http://dx.doi.org/10.1016/0032-5910(80)85065-0
  9. J. T. Davis, "Collection Efficiency of Cyclone Seperators". Academic Press, pp.88-93, 1972.
  10. Z. Choa, G. Sun, J. Jiao, et al., "Gas Flow Behavior and Residence Time Distribution in a Rough-cut Cyclone" Chem. Eng., pp.43-52, Vol. 106, 2005. DOI: http://dx.doi.org/10.1016/j.cej.2004.06.014

Cited by

  1. The Effect of Cyclone Vortex Finder Configurations on the Fine Particle Collection Efficiencies vol.39, pp.6, 2017, https://doi.org/10.4491/KSEE.2017.39.6.371