DOI QR코드

DOI QR Code

강력한 임의진동 하에서 PBGA 패키지의 실험적 신뢰성 검증

Experimental Assessment of PBGA Packaging Reliability under Strong Random Vibrations

  • 김영국 (인하대학교 공과대학 자율전공학부) ;
  • 황도순 (한국항공우주연구원)
  • Kim, Yeong K. (Department of Convergence Engineering and Management, Inha University) ;
  • Hwang, Dosoon (Korea Aerospace Research Institute)
  • 투고 : 2013.09.16
  • 심사 : 2013.09.27
  • 발행 : 2013.09.30

초록

Plastic ball grid array (PBGA)에 대한 강력한 임의 진동에서의 신뢰성을 실험적으로 검증하였다. 실험시편을 만들기 위해 데이지 체인이 형성된 PCB에 칩을 실장시킨 후 그중 절반은 underfill 공정을 거쳤다. 임의 진동 프로파일은 인공위성 전자장비의 신뢰성 검증에서 사용되는 두 종류의 진동 수준, 즉 판정시험 (acceptance level) 및 합격시험(qualification level)을 사용하였으며 각각의 power spectrum density는 22.7 Grms와 32.1 Grms였다. 실험후 underfill과 관계없이 모든 샘플에서 솔더의 균열이 발생되지 않았으며, 차후 항공 및 우주용 전자장비를 대치할 수 있는 패키징 구조의 가능성을 보여 줬다.

Experimental analyses on the solder joint reliability of plastic ball grid array under harsh random vibration were presented. The chips were assembled on the daisy chained circuit boards for the test samples preparation, half of which were processed for underfill to investigate the underfill effects on the solder failures. Acceptance and qualification levels were applied for the solder failure tests, and the overall controlled RMS of the power spectrum densities of the steps were 22.7 Grms and 32.1 Grms, respectively. It was found that the samples survived without any solder failure during the tests, demonstrating the robustness of the packaging structure for potential avionics and space applications.

키워드

참고문헌

  1. R. Ghaffarian, "CCGA Packages for Space Applications", Microelectron. Reliab., 46, 2006 (2006). https://doi.org/10.1016/j.microrel.2006.07.094
  2. H. Qi, M. Osterman and M. Pecht, "Plastic Ball Grid Array Solder Joint Reliability for Avionics Applications", IEEE Trans. Compon. Packag. Technol., 30(2), 242 (2007). https://doi.org/10.1109/TCAPT.2007.898346
  3. M. Elik and C. Genc, "Mechanical Fatigue of an Electronic Component under Random Vibration", Fatigue Fract. Engng Mater. Struct., 31(7), 505 (2008). https://doi.org/10.1111/j.1460-2695.2008.01227.x
  4. F. X. Che and J. H. L. Pang, "Vibration Reliability Test and Finite Element Analysis for Flip Chip Solder Joints", Microelectron. Reliab., 49, 754 (2009). https://doi.org/10.1016/j.microrel.2009.03.022
  5. Y. Zhou, M. Al-Bassyiouni and A. Dasgupta, "Vibration Durability Assessment of Sn3.0Ag0.5Cu and Sn37Pb Solders under Harmonic Excitation", ASME J. Electron. Packag., 131(1), 011016 (2009). https://doi.org/10.1115/1.3078195
  6. D. Yu, A. Al-Yafawi, T. T. Nguyen, S. Park and S. Chung, "High-Cycle Fatigue Life Prediction for Pb-free BGA under Random Vibration Loading", Microelectron. Reliab., 51, 649 (2011). https://doi.org/10.1016/j.microrel.2010.10.003
  7. M. Wu, "Design of Experiments to Investigate Reliability for Solder Joints PBGA Package under High Cycle Fatigue", Microelectron. Reliab., 50, 127 (2010). https://doi.org/10.1016/j.microrel.2009.09.007
  8. R. S. Li, "A Methodology for Fatigue Prediction of Electronic Components under Random Vibration Load", ASME J. Electron. Packag., 123(4), 394 (1999).
  9. Y. Zhou, M. Al-Bassyiouni and A. Dasgupta, "Harmonic and Random Vibration Durability of SAC305 and Sn37Pb Solder Alloys", IEEE Trans. Compon. Packag. Technol., 33, 319 (2010). https://doi.org/10.1109/TCAPT.2009.2036834
  10. C. Basaran, A. Cartwright and Y. Zhao, "Experimental Damage Mechanics of Microelectronics Solder Joints under Concurrent Vibration and Thermal Loading", Int. J. Damage Mechanics, 10, 153 (2001). https://doi.org/10.1106/HLB3-MJC8-JVYL-9A9P
  11. C. Basaran and R. Chandaroy, "Thermomechanical Analysis of Solder Joints under Thermal and Vibrational Loading", Trans. ASME, 124, 60 (2002).
  12. Y. Zhao, C. Basaran, A. Cartwright and T. Dishongh, "Thermomechanical Behavior of Micron Scale Solder Joints under Dynamic Loads", Mechanics Mater., 3, 161 (2000).
  13. Y.-H. Ko, T.-S. Kim, Y.-K. Lee, S. Yoo and C.-W. Lee, "Reliability of High Temperature and Vibration in Sn3.5Ag and Sn0.7Cu Lead-free Solders", J. Microelectron. Packag. Soc., 19(3), 31 (2012). https://doi.org/10.6117/kmeps.2012.19.3.031
  14. D. S. Steinberg, Vibration Analysis for Electronics Equipment, 3rd Ed., John Wiley & Sons, New York (2000).