DOI QR코드

DOI QR Code

Solderability and BGA Joint Reliability of Sn-Ag-Cu-In-(Mn, Pd) Pb-free Solders

Sn-Ag-Cu-In-(Mn, Pd) 무연솔더의 솔더링성과 BGA 접합부 신뢰성

  • Jang, Jae-Won (Advanced Welding & Joining Technology Center, KITECH) ;
  • Yu, A-Mi (Advanced Welding & Joining Technology Center, KITECH) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Lee, Chang-Woo (Advanced Welding & Joining Technology Center, KITECH) ;
  • Kim, Jun-Ki (Advanced Welding & Joining Technology Center, KITECH)
  • 장재원 (한국생산기술연구원 용접접합기술센터/마이크로조이닝센터) ;
  • 유아미 (한국생산기술연구원 용접접합기술센터/마이크로조이닝센터) ;
  • 이종현 (서울과학기술대학교 신소재공학과) ;
  • 이창우 (한국생산기술연구원 용접접합기술센터/마이크로조이닝센터) ;
  • 김준기 (한국생산기술연구원 용접접합기술센터/마이크로조이닝센터)
  • Received : 2013.09.04
  • Accepted : 2013.09.27
  • Published : 2013.09.30

Abstract

Although the lowering of Ag content in Sn-3.0Ag-0.5Cu is known to improve the mechanical shock reliability of the solder joint, it is also known to be detrimental to the solderbility. In this study, the quaternary alloying effect of In and the minor alloying effects of Mn and Pd on the solderability, thermal cycling and mechanical shock reliabilities of the low Ag content Sn-1.2Ag-0.7Cu solder were investigated using board-level BGA packages. The solderability of Sn-1.2Ag-0.7Cu-0.4In was proved to be comparable to that of Sn-3.0Ag-0.5Cu but its thermal cycling reliability was inferior to that of Sn-3.0Ag-0.5Cu. While the 0.03 wt% Pd addition to the Sn-1.2Ag-0.7Cu-0.4In decreased the solderability and reliabilities of solder joint, the 0.1 wt% Mn addition was proved to be beneficial especially for the mechanical shock reliability compared to those of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu compositions. It was considered to be due that the Mn addition decreased the Young's modulus of low Ag content Pb-free solders.

Sn-3.0Ag-0.5Cu 무연솔더에서 Ag 함량의 감소는 기계적 충격 신뢰성 향상에 도움이 되는 반면 솔더링성을 저하시키는 것으로 알려져 있다. 본 연구에서는 저 Ag함유 무연솔더의 솔더링성 향상을 위해 In을 첨가한 Sn-1.2Ag-0.7Cu-0.4In 4원계 조성과 여기에 미량의 Mn 및 Pd을 첨가한 무연솔더 조성에 대하여 솔더 젖음성을 평가하고, 보드 레벨 BGA 패키지의 열싸이클링 및 기계적 충격 신뢰성을 평가하였다. Sn-1.2Ag-0.7Cu 조성에 0.4 wt% In을 첨가한 합금의 젖음성은 Sn-3.0Ag-0.5Cu에 근접한 수준으로 향상되었으나, 패키지의 열싸이클링 신뢰성은 Sn-3.0Ag-0.5Cu에 미치지 못하는 것으로 나타났다. Sn-1.2Ag-0.7Cu-0.4In 조성에 0.03 wt% Pd의 첨가는 솔더 젖음성 및 패키지 신뢰성을 저하시킨 반면에 0.1 wt% Mn을 첨가한 합금은 특히 기계적 충격 신뢰성이 Sn-3.0Ag-0.5Cu는 물론 Sn-1.0Ag-0.5Cu보다도 우수한 수준으로 향상되었는데, 이는 Mn 첨가가 합금의 모듈러스를 감소시킨 데에 기인하는 것으로 생각된다.

Keywords

References

  1. Z. W. Zhong, P. Arulvanan, H. P. Maw, C. W. A. Lu, "Characterization of SnAgCu and SnPb Solder Joints on Low-Temperature Co-Fired Ceramic Substrate", Solder. Surf. Mount Technol., 19(4), 18 (2007).
  2. T. Takemoto, "Recent Progress of Lead-Free in Electronic Packaging", J. Vac. Soc. Jap., 48, 372 (2005). https://doi.org/10.3131/jvsj.48.372
  3. T. Takemoto, "Lead-Free Solder and Micro-Joining", Mater. Jap., 35(4), 320 (1996). https://doi.org/10.2320/materia.35.320
  4. G. Iyer, E. Ouyang, W. Kittidacha, S. Tantideeravit and S. LK, "Pb-free Solder: SAC105 vs SAC305 Drop-Test Reliability Data Comparison", Proc. 32th International Electronics Manufacturing Technology Symposium, San Jose, 251, IEEE/ CPMT (2007).
  5. I. Ohnuma, M. Miyashita, K. Anzai, X. J. Liu, H. Ohtani, K. Kainuma and K. Ishida, "Phase Equilibria and the Related Properties of Sn-Ag-Cu Based Pb-free Solder Alloys", J. Electron. Mater., 29(30), 1137 (2000). https://doi.org/10.1007/s11664-000-0004-9
  6. J. H. Lee, A. M. Yu, J. H. Kim, M. S. Kim and N. Kang, "Reaction Properties and Interfacial Intermetallics for SnxAg-0.5Cu Solders as a Function of Ag Content", Met. Mater. Int., 14(5), 649 (2008). https://doi.org/10.3365/met.mat.2008.10.649
  7. K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello and C. A. Handwerker, "Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys", J. Electron. Mater., 29, 1122 (2000). https://doi.org/10.1007/s11664-000-0003-x
  8. S. Terashima, Y. Kariya, T. Hosoi and M. Tanaka, "Effect of Silver Content on Thermal Fatigue Life of Sn-xAg-0.5Cu Flip-Chip Interconnects", J. Electron, Mater., 32(12), 1527 (2003). https://doi.org/10.1007/s11664-003-0125-z
  9. M. Amagai, Y. Toyota and T. Tajima, "High Solder Joint Reliability with Lead Free Solders", Proc. 53rd Electronic Components and Technology Conference(ECTC), New Orleans, 317, IEEE CPMT (2003).
  10. A. M. Yu, M. S. Kim, C. Y. Hyun and J. H. Lee, "Wettability Evaluation of Sn-0.3Ag-0.7Cu Solder Alloy with Different Flux Activity and Indium Addition", J. Microelectron. Packag. Soc., 15(4), 51 (2008).
  11. S. Fenglian, L. Yang, L. Yang and W. Jiabing, "Improving the Solderability and Electromigration Behavior of Low-Ag SnAgCu Soldering", Proc. 12th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems(Euro- SimE), Linz, 1/5, IEEE (2011).
  12. J. H. Lee, C. W. Lee and J. H. Kim, "Quaternary Pb-free Solder Composition Incorporating Sn-Ag-Cu-In", Korea Patent 100797161(2008).
  13. N. Sobczak, A. Kudyba, R. Nowak, W. Radziwill and K. Pietrzak, "Factors Affecting Wettability and Bond Strength of Solder Joint Couples", Pure Appl. Chem., 79(10), 1755 (2007).
  14. JIS Z 3198-4, "Test Methods for Lead-Free Solders - Part 4: Methods for Solderbility Test by a Wetting Balance Method and a Contact Angle Method", JIS Standards, The Japan Welding Engineering Society (2003).
  15. P. M. Hall, "Forces, Moments, and Displacements during Thermal Chamber Cycling of Leadless Ceramic Chip Carriers Soldered to Printed Boards", IEEE Trans. Components, Hybrids, Manuf. Technol., 7(4), 314 (1984). https://doi.org/10.1109/TCHMT.1984.1136384
  16. P. M. Hall, "Creep and Stress Relaxation in Solder Joints of Surface Mounted Chip Carriers", IEEE Trans. Components, Hybrids, Manuf. Technol., 12(4), 556 (1987).
  17. S. Terashima, Y. Kariya, T. Hosoi, and M. Tanaka, "Effect of Silver Content on Thermal Fatigue Life of Sn-xAg-0.5Cu Flip-Chip Interconnects", J. Electron. Mater., 32(12), 1527 (2003). https://doi.org/10.1007/s11664-003-0125-z
  18. JESD22-A104D, "Temperature Cycling", JEDEC Standard, JEDEC Solid State Technology Association (2005).
  19. E. H. Wong, K. M. Lim, N. Lee and S. Seah, "Drop Impact Test-Mechanics & Physics of Failure", Proc. 4th Electronics Packaging Technology Conference(EPTC), Singapore, 327, IEEE CPMT (2002).
  20. H. J. Albrecht, A. Juritza, K. Muller, W. H. Muller, Sterthaus, J. Villain and A. Vogliano, "Interface Reactions in Microelectronic Solder Joints and Associated Intermetallic Compounds: An Investigation of Their Mechanical Properties Using Nanoindentation", Proc. 5th Electronics Packaging Technology Conference(EPTC), Singapore, 726, IEEE CPMT (2003).
  21. JESD22-B111, "Board Level Drop Test Method of Components for Handheld Electronic Products", JEDEC Standard, JEDEC Solid State Technology Association(2003).
  22. M. Alajoki, L. Nguyen and J. Kivilahti, "Drop Test Reliability of Wafer Level Chip Scale Packages", Proc. 55th Electronic Components and Technology Conference(ECTC), Orlando, 637, IEEE CPMT (2005).
  23. H. H. Kim, D. H. Kim, J. B. Kim, H. J. Kim, J. U. Ahn, I. S. Kang, J. K. Lee, H. S. Ahn and S. Kim, "The Effect of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package", J. Microelectron. Packag. Soc., 17(3), 65 (2010).
  24. A. Shed, "Accumulated Creep Strain and Energy Density Based Thermal Fatigue Life Prediction Models for SnAgCu Solder Joint", Proc. 54th Electronic Components and Technology Conference(ECTC), Las Vegas, 737, IEEE CPMT (2004).
  25. J. S. Jeong, Y. S. Lee, K. H. Shin, S. K. Cheong, J. H. Kim and D. Y. Jang, "An Experimental Study on the Failure Characteristics of Sn-xAg-Cu Lead Free Solder", J. Manuf. Eng. Technol., 18(5), 449 (2009).
  26. C. M. L. Wu, D. Q. Yu, C. M. T. Law and L. Wang, "Properties of Lead-Free Solder Alloys with Rare Earth Element Additions", Mater. Sci. Eng., 44(1), 1 (2004).
  27. T. M. Kang, D. W. Lee, Y. K. Hwang, Q. H. Chung and B. K. Yoo, "A Study on the Correlation Between Board Level Drop Test Experiment and Simulation", J. Microelectron. Packag. Soc., 18(2), 35 (2011)