DOI QR코드

DOI QR Code

3D IC 열관리를 위한 TSV Liquid Cooling System

TSV Liquid Cooling System for 3D Integrated Circuits

  • 박만석 (서울과학기술대학교 NID융합기술대학원) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김사라은경 (서울과학기술대학교 NID융합기술대학원)
  • 투고 : 2013.08.26
  • 심사 : 2013.09.16
  • 발행 : 2013.09.30

초록

TSV는 그동안 3D IC 적층을 하는데 핵심 기술로 많이 연구되어 왔고, RC delay를 줄여 소자의 성능을 향상시키고, 전체 시스템 사이즈를 줄일 수 있는 기술로 각광을 받아왔다. 최근에는 TSV를 전기적 연결이 아닌 소자의 열관리를 위한 구조로 연구되고 있다. TSV를 이용한 liquid cooling 시스템 개발은 TSV 제조, TSV 디자인 (aspect ratio, size, distribution), 배선 밀도, microchannel 제조, sealing, 그리고 micropump 제조까지 풀어야 할 과제가 아직 많이 남아있다. 그러나 TSV를 이용한 liquid cooling 시스템은 열관리뿐 아니라 신호 대기시간(latency), 대역폭(bandwidth), 전력 소비(power consumption), 등에 크게 영향을 미치기 때문에 3D IC 적층 기술의 장점을 최대로 이용한 차세대 cooling 시스템으로 지속적인 개발이 필요하다.

3D integrated circuit(IC) technology with TSV(through Si via) liquid cooling system is discussed. As a device scales down, both interconnect and packaging technologies are not fast enough to follow transistor's technology. 3D IC technology is considered as one of key technologies to resolve a device scaling issue between transistor and packaging. However, despite of many advantages, 3D IC technology suffers from power delivery, thermal management, manufacturing yield, and device test. Especially for high density and high performance devices, power density increases significantly and it results in a major thermal problem in stacked ICs. In this paper, the recent studies of TSV liquid cooling system has been reviewed as one of device cooling methods for the next generation thermal management.

키워드

참고문헌

  1. M. S. Bakir, B. Dang and J. D. Meindl, "Revolutionary Nanosilicon Ancillary Technologies for Ultimate-Performance Gigascale Systems", Proc. IEEE CICC, San Jose, 421, IEEE SSCS/EDS (2007).
  2. G. G. Shahidi, "Evolution of CMOS Technology at 32 nm and Beyond", Proc. IEEE CICC, San Jose, 413, IEEE SSCS/EDS (2007).
  3. J. W. Joyner, P. Zarkesh-Ha and J. D. Meindl, "Global Interconnect Design in a Three-Dimensional System-on-a-Chip", IEEE Tran. VLSI Systems, 12, 367 (2004). https://doi.org/10.1109/TVLSI.2004.825835
  4. R. S. List, C. Webb and S. E. Kim, "3D Wafer Stacking Technology", Proc. AMC, 18, 29 (2002).
  5. J. Balachandran, S. Brebels, G. Carchon, M. Kuijk, W. De Raedt, B. Nauwelaers and E. Beyne, "Wafer-Level Package Interconnect Options", IEEE VLSI Systems, 14(6), 654 (2006). https://doi.org/10.1109/TVLSI.2006.878229
  6. E. Kim, "Overview of High Performance 3D-WLP", Kor. J. Mater. Res., 17(7), 371 (2007). https://doi.org/10.3740/MRSK.2007.17.7.347
  7. E. Kim and J. Sung, "Yield Challenges in Wafer Stacking Technology", Microelectron. Reliab., 48, 1102 (2008). https://doi.org/10.1016/j.microrel.2008.03.010
  8. Y. Kim, S. Kang, S. Kim and S. E. Kim, "Wafer Warpage Analysis of Stacked Wafers for 3D Integration", Microelectron. Eng., 89, 46 (2012). https://doi.org/10.1016/j.mee.2011.01.079
  9. G. Huang, M. Bakir, A. Naeemi, H. Chen and J. D. Meindl, "Power Delivery for 3D Chip Stacks: Physical Modeling and Design Implication", IEEE EPEPS, 205 (2007).
  10. G. Y. Tang, S. P. Tan, N. Khan, D. Pinjala, J. H. Lau, A. B. Yu, K. Vaidyanathan and K. C. Toh "Integrated Liquid Cooling Systems for 3-D Stacked TSV Modules", IEEE Trans. Compon. Packag. Technol., 33(1), 184 (2010). https://doi.org/10.1109/TCAPT.2009.2033039
  11. http://www.itrs.net
  12. A. J. McNamara, Y. Joshi and Z. M. Zhang, "Characterization of Nanostructured Thermal Interface Materials: A Review", Int. J. Therm. Sci., 62, 2 (2011).
  13. Jun Xu and T. S. Fisher, "Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays", Int. J. Heat Mass Transfer, 49(9-10), 1658 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.039
  14. A. Hamdan, A. McLanahan, R. Richards and C. Richards, "Characterization of a Liquid-Metal Microdroplet Thermal Interface Material", Exp. Therm. Fluid Sci., 35(7), 1250 (2011). https://doi.org/10.1016/j.expthermflusci.2011.04.012
  15. S. N. Paisner, "Nanotechnology and Mathematical Methods for High-Performance Thermal Interface Materials", Global SMT & Packag., 36 (2008).
  16. J. Darabi and K. Ekula, "Development of a Chip-Integrated Micro Cooling Device", Microelectron. J., 34(11), 1067 (2003). https://doi.org/10.1016/j.mejo.2003.09.010
  17. Y. M. Hung and Q. Seng, "Effects of Geometric Design on Thermal Performance of Star-Groove Micro-Heat Pipes", Int. J. Heat Mass Transfer, 54(5-6), 1198 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.070
  18. J. Vaes, W. Dehaene, E. Beyne and Y. Travaly, "Integration Challenges of Copper Through Silicon Via (TSV) Metallization for 3D-Stacked IC Integration", Microelectron. Eng., 88(50), 745 (2011). https://doi.org/10.1016/j.mee.2010.06.026
  19. R. Hon, S. W. Ricky Lee, S. X. Zhang and C. K. Wong, "Multi-Stack Flip Chip 3D Packaging with Copper Plated Through-Silicon Vertical Interconnection", IEEE EPTC, 384 (2005).
  20. G. Upadhya, M. Munch, P. Zhou, J. Hom, D. Werner and M. McMaster, "Micro-Scale Liquid Cooling System for High Heat Flux Processor Cooling Applications", IEEE STMMS,, 116 (2006).
  21. S. C. Mohapatra and D. Loikits, "Advances in Liquid Coolant Technologies for Electronics Cooling", IEEE STMMS, 354 (2005).
  22. Y. Wei and Y. Joshi, "Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components", ASME J. Electron. Packag., 126, 60 (2004). https://doi.org/10.1115/1.1647124
  23. H. Oprins, G. Van der Veken, C. C. S. Nicole, C. J. M. Lasance and M. Baelmans, "On-chip Liquid Cooling with Integrated Pump Technology", IEEE Trans. Compon. Packag. Technol., 30(2), 209 (2007). https://doi.org/10.1109/TCAPT.2007.898301
  24. H. Y. Zhang, D. Pinjila, T. N. Wong and Y. K. Joshi, "Development of Liquid Cooling Techniques for Flip Chip Ball Grid Array Packages with High Flux Heat Dissipations", IEEE Trans. Compon. Packag. Technol., 28(1), 127 (2005). https://doi.org/10.1109/TCAPT.2004.843164
  25. P. S. Lee, J. C. Ho and H. Xue, "Experimental Study on Laminar Heat Transfer in Microchannel Heat Sink", IEEE ITHERM, 379 (2002).
  26. J. Li and G. P. Peterson, "Geometric Optimization of a Micro Heat Sink with Liquid Flow", IEEE Trans. Compon. Packag. Technol., 29(1), 145 (2006). https://doi.org/10.1109/TCAPT.2005.853170
  27. T. Chen and S. V. Garimella, "Flow Boiling Heat Transfer to a Dielectric Coolant in a Microchannel Heat Sink", IEEE Trans. Compon. Packag. Technol., 30(1), 24 (2007). https://doi.org/10.1109/TCAPT.2007.892063
  28. J. Lee and I. Mudawar, "Low-Temperature Two-Phase Microchannel Cooling for High-Heat-Flux Thermal Management of Defense Electronics", IEEE Trans. Compon. Packag. Technol., 32(2), 453 (2009). https://doi.org/10.1109/TCAPT.2008.2005783
  29. T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wunderle. H. Oppermann and H. ReichlKloter, "Interlayer Cooling Potential in Vertically Integrated Packages", Microsystem Tech., 15, 57 (2009). https://doi.org/10.1007/s00542-008-0690-4
  30. Y. Zhang, C. King, J. Zaveri, Y. J. Kim, V. Sahu, Y. Joshi and M. Bakir, "Coupled Electrical and Thermal 3D IC Centric Microfluidic Heat Sink Design and Technology", Proc. 61th ECTC, Lake Buena Vista, 2037, IEEE CPMT (2011).
  31. B. Dang, M. S. Bakir and J. D. Meindl, "Integrated Thermal- Fluidic I/O Interconnects for an On-Chip Microchannel Heat Sink", IEEE EDL, 27, 117 (2006). https://doi.org/10.1109/LED.2005.862693
  32. M. Bakir, C. King, D. Sekar, H. Thacker, B. Dang, G. Huang, A. Naeemi and J. D. Meindl, "3D Heterogeneous Integrated Systems: Liquid Cooling, Power Delivery, and Implementation", Proc. IEEE CICC, San jose, 663, IEEE SSCS/EDS (2008).
  33. D. Sekar, C.King, B. Dang, T. Spencer, H. Thacker, P. Joseph, M. Bakir and J. Meind "A 3D-IC Technology with Integrated Microchannel Cooling", IEEE IITC, 13 (2008).
  34. N. Khan, L. H. Yu, T. S. Pin, S. W. Ho, V. Kripesh, D. Pinjala J. H. Lau and T. K. Chuan "3-D Packaging With Through- Silicon Via (TSV) for Electrical and Fluidic Interconnections", IEEE Trans. Comp., Packag., Manuf. Technol., 3(2), 221 (2013). https://doi.org/10.1109/TCPMT.2012.2186297
  35. A. Yu, N. Khan, G. Archit, D. Pinjala, K. C. Toh, V. Kripesh, S. W. Yoon and J. Lau, "Fabrication of Silicon Carriers with TSV Electrical Interconnections and Embedded Thermal Solutions for High Power 3-D Package", Proc. 58th ECTC, Lake Buena Vista, 24, IEEE CPMT (2008).
  36. J. H. Lau and T. G. Yue, "Effects of TSVs (Through-Silicon Vias) on Thermal Performances of 3D IC Integration System- In-Package (SiP)", Microelectron. Reliab., 52, 2660 (2012). https://doi.org/10.1016/j.microrel.2012.04.002
  37. T. G. Yue, T. S. Pin, N. Khan, D. Pinjala, J. H. Lau, Y. A. Bin, K. Vaidyanathan and T. K. Chuan, "Fluidic Interconnects in Integrated Liquid Cooling Systems for 3-D Stacked TSV Modules", Proc. 10th EPTC, Singapore, 552, IEEE Reliability/ CPMT/ED (2008).
  38. H. Mizunuma, C. Yang and Y. Lu, "Thermal Modeling for 3D-ICs with Integrated Microchannel Cooling", IEEE ICCAD, 256 (2009).
  39. B. Shi, A. Srivastava and A. Bar-Cohen, "Hybrid 3D-IC Cooling System Using Micro-fluidic Cooling and Thermal TSVs", IEEE ISVLSI, 33 (2012).
  40. D. Kearney, T. Hilt and P. Pham, "A Liquid Cooling Solution for Temperature Redistribution in 3D IC Architectures", Microelectron. J., 43(9), 602 (2012). https://doi.org/10.1016/j.mejo.2011.03.012

피인용 문헌

  1. Cu Through-Via Formation using Open Via-hole Filling with Electrodeposition vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.117
  2. Thermal Conductivity Measurement Method for the Thin Epoxy Adhesive Joint Layer vol.39, pp.4, 2021, https://doi.org/10.5781/jwj.2021.39.4.8