DOI QR코드

DOI QR Code

AlGaN/GaN-on-Si 전력스위칭소자의 자체발열 현상에 관한 연구

Study on Self-Heating Effects in AlGaN/GaN-on-Si Power Transistors

  • 김신영 (홍익대학교 전자전기공학부) ;
  • 차호영 (홍익대학교 전자전기공학부)
  • Kim, Shin Young (School of Electronic and Electrical Engineering, Hongik University) ;
  • Cha, Ho-Young (School of Electronic and Electrical Engineering, Hongik University)
  • 투고 : 2012.11.27
  • 발행 : 2013.02.25

초록

높은 전류밀도를 갖는 AlGaN/GaN 전력소자는 소자 동작 시에 발생하는 자체발열 현상으로 인해 소자의 전류-전압특성이 저하된다. 특히 열전도도가 낮은 Si 기판을 사용할 경우 더욱 심각한 문제를 발생시킨다. 본 논문에서는 Si기판에 성장한 AlGaN/GaN-on-Si 웨이퍼를 사용하여 전력소자를 제작하였으며, 채널 폭과 Si기판의 두께에 따른 자체 발열 현상을 측정과 시뮬레이션을 통하여 분석하였다. 그리고 이를 기반으로 다채널을 갖는 대면적 전력소자 설계에서 최대전류를 얻기 위하여 열방출을 효과적으로 할 수 있는 구조를 제안하였다. 비아홀과 공통전극을 사용하고 Si 기판을 100 ${\mu}m$로 얇게 하였을 때 래핑을 하지 않은 소자 대비 약 75%의 온 상태 전류증가와 68% 이상의 채널온도 감소가 기대된다.

Self-heating effects during operation of high current AlGaN/GaN power transistors degrade the current-voltage characteristics. In particular, this problem becomes serious when a low thermal conductivity Si substrate is used. In this work, AlGaN/GaN-on-Si devices were fabricated with various channel widths and Si substrate thicknesses in which the structure dependent self-heating effects were investigated by temperature dependent measurements as well as thermal simulation. Accordingly, a device structure that can effectively dissipate the heat was proposed in order to achieve the maximum current in a multi-channel, large area device. Employing via-holes and common electrodes with a 100 ${\mu}m$ Si substrate thickness improved the current level by 75% reducing the channel temperature by 68%.

키워드

참고문헌

  1. H. Jain, S. Rajawat, and P. Agrawal, "Comparision of wide band gap semiconductors for power electronics applications," in Proc. of International Conference of Recent Advances in Microwave Theory and Applications, pp. 878-881, Nov 2008.
  2. H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, "High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates," IEEE Electron Dev. Lett. Vol. 25, No. 4, pp. 161-163, April 2004. https://doi.org/10.1109/LED.2004.824845
  3. J.-G. Lee, B.-R. Park, H.-J. Lee, M. Lee, K.-S. Seo, and H.-Y. Cha, "State-of-the-Art AlGaN/GaN-on-Si HFETs with dual field plates," Appl. Phys. Express, vol. 5, no. 6, p. 066502, May 2012. https://doi.org/10.1143/APEX.5.066502
  4. W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, and T. Ogura, "600 V AlGaN/GaN power-HEMT: Design, fabrication and demonstration on high voltage DC-DC converter," IEDM Tech. Dig., pp.587-590 2003.
  5. T. Morita, S. Tamura, Y. Anda, M. Ishida, Y.Uemoto, T. Ueda, T. Tanaka, and D. Ueda "99.3% efficiency of three-phase inverter for motor drive using GaN-based gate injection transistors," Applied Power Electronics Conference and Exposition (APEC), 26th Annual IEEE, pp.481-484, Mar 2011.
  6. J.-G. Lee, H.-J. Lee, M. Lee, Y. Ryoo, J.-K. Mun, K.-S Seo, and H.-Y. Cha "Field plated AlGaN/GaN-on-Si HEMTs for high voltage switching applications," J. Korean Phys. Soc. Vol. 59, No. 3, pp.2297-2300, Sep 2011. https://doi.org/10.3938/jkps.59.2297
  7. B.-R. Park, J.-G. Lee, H.-J. Lee, J. Lim, K.-S. Seo and H.-Y. Cha "Breakdown voltage enhancement in field plated AlGaN/GaN-on-Si HFETs using mesa-first prepassivation process," Electron. Lett. Vol. 48, No. 3, pp. 181-182, Feb 2012. https://doi.org/10.1049/el.2011.3778
  8. E.,R. Heller and A. Crespo, "Electro-thermal modeling of multifinger AlGaN/GaN HEMT device operation including thermal substrate effects," Microelectronics Reliability Vol. 48, No. 1, pp.45-50, Jan 2008. https://doi.org/10.1016/j.microrel.2007.01.090