Study on the Removal of Water Vapor Using PEI/PEBAX Composite Hollow Fiber Membrane

PEI/PEBAX 복합 중공사 막을 이용한 수분 제거에 관한 연구

  • Received : 2012.11.26
  • Accepted : 2013.02.05
  • Published : 2013.04.30

Abstract

In this research, PEI/PEBAX composite hollow fiber membrane was used for the removal of water vapor from gases. PEI (Polyetherimide) substrate membrane was spinned by dry-wet phase inversion method and coated with PEBAX (Polyether block amides) 3533 and PEBAX1657. Fabricated fibers typically had an asymmetric structure of a dense top layer supported by a sponge-like substructure through scanning electron microscopy (SEM). $H_2O/N_2$ mixture gas was used to compare the performance of separation according to temperature, pressure and water activity. The results of PEBAX3533 and PEBAX1657 composite membranes respectively showed $H_2O/N_2$ selectivity of 61.7~118.5 and 85.3~175.4 according to operating conditions. PEBAX3533 composite hollow fiber membranes module showed the water vapor removal of 90%.

본 연구에서는 복합 중공사 막을 이용하여 가스 중 수분(water vapor)의 제거에 관한 연구를 수행하였다. 막 소재로는 PEI (Polyetherimide)를 사용하였고 건/습식 상전이 법을 이용하여 중공사 형태로 제조한 후, 표면에 PEBAX (Polyether block amides) 3533또는 PEBAX1657를 코팅하여 복합 중공사막을 제조하였다. 제조된 중공사 막에 대한 SEM 관찰을 통하여 외부 표면에 치밀한 선택층과 망상구조의 하부로 이루어진 비대칭 구조임을 확인하였다. 막의 수분 투과특성을 확인하기 위하여 수분활성도(Water activity), 온도와 압력 변화에 따른 수분과 $N_2$의 투과도를 측정하였다. PEBAX3533을 코팅한 복합중공사 막의 수분 투과도는 운전 조건에 따라 385.6~727.3 GPU, 수분/$N_2$ 선택도는 61.7~118.5의 값을 나타내었다. PEBAX1657 코팅의 경우, 수분 투과도는 204.1~562.1 GPU, 수분/$N_2$ 선택도는 85.3~175.4의 값을 나타내었다. 막의 수분제거율은 PEBAX3533 코팅한 경우에 90%를 나타내었다.

Keywords

References

  1. H. Sijbesma, K. Nymeijer, R. van Marsijk, R. Heijboer, J. Potreck, and M. Wessling, "Flue gas dehydration using polymer membranes", J. Membr. Sci., 313, 263-276 (2008). https://doi.org/10.1016/j.memsci.2008.01.024
  2. S. R. Reijerkerk, R. Jordana, K. Nijmeijer, and M. Wessling, "Highly hydrophilic, rubbery membranes for $CO_{2}$ capture and dehydration of flue gas", International Journal of Greenhouse Gas Control, 5, 26-36 (2011). https://doi.org/10.1016/j.ijggc.2010.06.014
  3. H. lin, S. M. Thompson, A, Serbanescu-Martin, H. G. Wijmans, K. D. Amo, K. A. Lokhandwala, and T. C. Merkel, "Dehydration of natural gas using membranes. Part Ⅰ: Composite membranes", J. Membr. Sci., 413-414, 70-81 (2012). https://doi.org/10.1016/j.memsci.2012.04.009
  4. J. W. Rhim, H. Y. Hwang, S. Y. Ha, and S. Y. Nam, "Application and development of dehumidication system-focusing on membrane dryer", Membrane Journal, 14, 1-17 (2004).
  5. M. Strand, J. Pagels, A. Szpila, A. Gudmundsson, E. Swiethlicki, M. Bohgard, and M. Sanati, "Fly ash penetration through electrostatic precipitatior and Flue gas condenser in a 6 MW biomass fired boiler", Energy & Fuels, 16, 1499-1506 (2002). https://doi.org/10.1021/ef020076b
  6. X. H. Liu, Y. Zhang, K. Y. Qum, and Y. Jiang, "Experimental study on mass transfer performances of cross flow dehumidifier using liquid desiccant", Energy Conversion and Management, 47, 2682- 2692 (2006). https://doi.org/10.1016/j.enconman.2005.10.035
  7. J. Potreck, K. Nijmeijer, T. Kosinski, and M. Wessling, "Mixed water vapor/gas transport through the rubbery polymer PEBAX 1074", J. Memrb. Sci., 338, 11-16 (2009). https://doi.org/10.1016/j.memsci.2009.03.051
  8. S. R. Park, B. J. Chang, H. S. Ahn, D. K. Kim, and J. H. Kim, "Preparation of PES hollow fiber membranes and their $O_{2}$/$N_{2}$ permeation properties", Membrane Journal, 21, 62-71 (2011).
  9. S. R. Park, H. S. Ahn, and J. H. Kim, "Prepartion of asymmetric PES hollow fiber gas separation membranes and their $CO_{2}$/$CH_{4}$ separation properties", Membrane Journal, 21, 367-376 (2011).
  10. P. J. Roman, F. Detlev, K. Thomas, and P. Klaus- Vikor, "Gas permeation measurement under defined humidity via constant volume/variable pressure method", J. Membr. Sci., 389, 343-348 (2012). https://doi.org/10.1016/j.memsci.2011.10.046
  11. S. J. Metz, W. J. C. van de Ven, M. H. V. Mulder, and M. Wessling, "Mixed gas water vapor/$N_{2}$ transport in poly (ethylene oxide) poly (butylene terephthalate) block copolymers", J. Membr. Sci., 266, 51-61 (2005). https://doi.org/10.1016/j.memsci.2005.05.010
  12. A. Car, C. Stropnik, W. Wave, and K. V. Peinemann, "PEG modified poly(amide-b-ethylene oxide) membranes for $CO_{2}$ separation", J. Membr. Sci., 307, 88-95 (2008). https://doi.org/10.1016/j.memsci.2007.09.023
  13. J. H. Kim, S. Y. Ha, and Y. M. Lee, "Gas permeation of poly(amide-6-b-ethyleneoxide) copolymer", J. Membr. Sci., 190, 179-193 (2001). https://doi.org/10.1016/S0376-7388(01)00444-6
  14. D. Wang, K. Li, and W. K. Teo, "Preparation of asymmetric polyetherimide hollow fiber membrane with high gas selectivities", J. Membr. Sci., 208, 419426 (2002).
  15. J. H. Kim, J. W. Rhim, and S. B. Lee, "Research Trend of Membrae Technology for Separation of Carbon Dioxide from Flue Gas", Membrane Journal, 12, 121-142 (2002).
  16. G. Q. Chen, C. A. Scholes, G. G. Qiao, and S. E. Kentish, "Water vapor permeation in polyimide membranes", J. Membr. Sci., 379, 479-487 (2001).
  17. D. Wang, K. Li, and W. K. Teo, "Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation", J. Membr. Sci., 138, 193-201 (1998). https://doi.org/10.1016/S0376-7388(97)00229-9
  18. K. Briceno, D. Montane, R. G. Valls, A. Iulianelli, and A. Basile, "Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation", J. Membr. Sci., 415-416, 288-297 (2008).
  19. S. J. Metz, W. J. C. van de Ven, J. Potreck, M. H. V. Mulder, and M. Wessling, "Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes", J. Membr. Sci., 251, 29-41 (2005). https://doi.org/10.1016/j.memsci.2004.08.036
  20. W. J. Massman, "A review of the molecular diffusivites of $H_{2}O$, $CO_{2}$, $CH_{4}$, CO, $O_3$, $SO_{2}$, $NH_{3}$, $N_{2}O$, NO and $NO_{2}$ in air, $O_{2}$ and $N_{2}$ near STP", Atmos. Environ., 32, 111-1127 (1998).
  21. J. H. Kim, S. K. Hong, and S. J. Park, "Predictive thermodynamic model for gas permeability of gas separation membrane", Korean Chem. Eng. Res., 45, 619-626 (2007).
  22. D. H. Kim, G. L. Kim, H. D. Jo, H. S. Park, and H. K. Lee, "Study on the separation of $N_{2}$/SF6 mixture gas using polyimide hollow fiber membrane", Korean Chem. Eng. Res., 48, 660-667 (2010).