DOI QR코드

DOI QR Code

Electrical and Optical Properties of Newly Synthesised Low Bandgap Polymer with Protic and Aprotic Ionic Liquids

양자성, 비양자성 이온성 액체와 새롭게 합성된 낮은 밴드갭을 갖는 고분자와의 상호작용에 의한 전기적,광학적 특성 연구

  • Received : 2013.08.16
  • Accepted : 2013.09.24
  • Published : 2013.09.30

Abstract

Use of low bandgap polymers is the most suitable way to harvest a broader spectrum of solar radiations for solar cells. But, still there is lack of most efficient low bandgap polymer. In order to solve this problem, we have synthesised a new low bandgap polymer and investigated its interaction with the ILs to enhance its conductivity. ILs may undergo almost unlimited structural variations; these structural variations have attracted extensive attention in polymer studies. In addition to this, UV-Vis spectroscopy, confocal Raman spectroscopy and FT-IR spectroscopy results have revealed that all studied ILs (tributylmethylammonium methyl sulfate [$N_{1444}$][$MeSO_4$] from ammonium family) and 1-methylimidazolium chloride ([MIM]Cl, and 1-butyl-3-methylimidazolium chloride [Bmim]Cl from imidazolium family) has potential to interact with polymer. Further, protic ILs shows enhanced conductivity than aprotic ILs with low bandgap polymer. This study provides the combined effect of low bandgap polymer and ILs that may generate many theoretical and experimental opportunities.

Keywords

References

  1. Liu Y, Lu C, Twigg S, Ghaffari M, Lin J, Winograd, and Q. M, Zhang , Direct Observation of Ion Distributions near Electrodes in Ionic Polymer Actuators Containing Ionic Liquids, Sci.Rep-U.K, 3, 1-7 (2013).
  2. Ye YS, Rick J, Hwang, BJ Ionic Liquid Polymer Electrolytes, J. Mater. Chem. A, 1, 2719-243 (2013). https://doi.org/10.1039/C2TA00126H
  3. Winterton N, Solubilization of polymers by ionic liquids J Mater Chem 16, 4281-4293 (2006). https://doi.org/10.1039/b610143g
  4. Cheng H, Zhu C, Huang B, Lu M, Yang Y, Synthesis and Electrochemical Characterization of PEO-based Polymer Electrolytes With Room Temperature Ionic Liquids, Electrochemical Acta, 52, 5789-5794 (2007). https://doi.org/10.1016/j.electacta.2007.02.062
  5. Ohno H, Yoshizawa M, Ogihara W, Development of new class of ion conductive polymers based on ionic liquids Electrochemical Acta, 50, 255-261 (2004). https://doi.org/10.1016/j.electacta.2004.01.091
  6. Rajput DS, Yamada K, Sekhon SS, Study of Ion Diffusional Motion in Ionic Liquid-Based Polymer Electrolytes by Simultaneous Solid State NMR and DTA J. Phys. Chem. B, 117, 2475-2481 (2013). https://doi.org/10.1021/jp3116512
  7. Zhao Q, Soll S, Antonietti M, Yuan J, Organic Acids can Crosslink Poly(ionic liquid)s into Mesoporous Polyelectrolyte Complexes, Polym. Chem, 4, 2432-2435 (2013). https://doi.org/10.1039/c3py00159h
  8. M. J. Park, I. Choi , J. Hong, O. Kim, Polymer Electrolytes Integrated with Ionic Liquids for Future Electrochemical Devices, J. Appl. Polym. Sci, DOI: 10. 1002/APP.39064 (2013).
  9. Qiu B, Lin B, Yan F, Ionic Liquid/poly(ionic liquid)-Based Electrolytes for Energy Devices, 62, 335-337 (2013).
  10. de Carvalho R. N. L, Lourenco N. M. T, Gomes P. M. V, da Fonseca1 L. J. P, Swelling Behavior of Gelatin-Ionic Liquid Functional Polymers" J. Poly. Sci. Part B: Poly Phys 51, 817-825 (2013). https://doi.org/10.1002/polb.23252
  11. Kawano R, Matsui H, Matsuyama C, Sato A, Susan MABH, Tanabe N, Watanabe M, High Performance Dye-Sensitized Solar Cells Using Ionic Liquids as their Electrolytes, J. Photochem. Photobiol A: Chem, 164, 87-92 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.019
  12. Lee J, Panzer M. J, He Y, Lodge T. P, Frisbie C. D, Ion Gel Gated Polymer Thin-Film Transistors, J. Am. Chem. Soc, 129, 4532-4533 (2007). https://doi.org/10.1021/ja070875e
  13. J. H. Shin, Henderson W. A, Scaccia S, Prosini P. P, Passerini S, Solid-state Li/LiFePO4 Polymer Electrolyte Batteries Incorporating an Ionic Liquid Cycled at $40^{\circ}C$, J. Power. Sources 156, 560-566 (2006). https://doi.org/10.1016/j.jpowsour.2005.06.026
  14. Attri P, Reddy PM, Venkatesu P, Kumar A, Hofman T, Measurements and Molecular Interactions for N,N-Dimethylformamide with Ionic Liquid Mixed Solvents, J. Phys. Chem. B 114, 6126-6133 (2010). https://doi.org/10.1021/jp101209j
  15. Welton T, Room-temperature Ionic Liquids Solvents for Synthesis and Catalysis, Chem. Rev, 99, 2071-2084 (1999). https://doi.org/10.1021/cr980032t
  16. Seddon KR Ionic Liquids for Clean Technology, J. Chem. Technol. Biotechnol, 68, 351-356 (1997). https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4
  17. Greaves T. L, Drummond C Protic Ionic Liquids: Properties and Applications. J. Chem. Rev, 108, 206-237 (2008). https://doi.org/10.1021/cr068040u
  18. Rogers R. D, Seddon K. R, Ionic liquids--solvents of the future?, Science, 302, 792-793 (2003). https://doi.org/10.1126/science.1090313
  19. Davis J. H, "Task-Specific Ionic Liquids" Chem Lett 33, 1072-1077 (2004). https://doi.org/10.1246/cl.2004.1072
  20. Attri P, Venkatesu P, Kumar A, Activity and Stability of ${\alpha}$-Chymotrypsin in Biocompatible Ionic Liquids: Enzyme Refolding by Triethyl Ammonium Acetate, Phys. Chem, 13, 2788-2796 (2011).
  21. Chiappe C, Pomelli C. S, Rajamani S, Influence of Structural Variations in Cationic and Anionic Moieties on the Polarity of Ionic Liquids J. Phys. Chem. B, 115, 9653-9661 (2011).
  22. Attri P, Venkatesu P, Kumar A, Water and a Protic Ionic Liquid Acted as Refolding Additives for Chemically Denatured Enzymes, Org. Biomol. Chem, 10, 7475-7478 (2012). https://doi.org/10.1039/c2ob26001h
  23. Noda A, Bin Hasan Susan A, Kudo K, Mitsushima S, Hayamizu K, Watanabe 1. M, Brønsted Acid−Base Ionic Liquids as Proton-Conducting Nonaqueous Electrolytes, J. Phys. Chem. B, 107, 4024-4033 (2003). https://doi.org/10.1021/jp022347p
  24. Maia F. M, Rodriguez O, Macedo E. A, Free Energy of Transfer of a Methylene Group in Biphasic Systems of Water And Ionic Liquids [C3mpip][NTf2], [C3mpyrr][NTf2], and [C4mpyrr][NTf2], Ind. Eng. Chem. Res, 51, 8061-8068 (2012). https://doi.org/10.1021/ie300227f
  25. Hardelin L, Thunberg J, Perzon E, Westman G, Walkenstrom P, Gatenholm P, Electrospinning of Cellulose Nanofibers From Ionic Liquids: The Effect of Different Cosolvents, J. Appl. Polym. Sci, 125, 1901-1909 (2012). https://doi.org/10.1002/app.36323
  26. Megaw J, Busetti A, Gilmore BF, Isolation and Characterisation of 1-Alkyl-3-Methylimidazo lium Chloride Ionic Liquid-Tolerant and Biodegrading Marine Bacteria, Plos One, 8, e60806. doi:10.1371/journal.pone.0060806 (2013)
  27. Hou X. D, Liu Q. P, Smith T. J, Li N, Zo M. H, Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids, Plos One, 8, e59145. doi:10.1371/journal.pone.0059145 (2013)
  28. Martinelli A, Matic A, Jacobsson P, Borjesson L, Navarra MA, Panero S, Scrosati B A Structural Study on Ionic-Liquid-Based Polymer Electrolyte Membranes. J Electroche m Soc 154, G183-G187 (2007) . https://doi.org/10.1149/1.2745640
  29. Sekhon S. S, J. S Park, E. Cho, Y. G. Yoon, C. S. Kim, W. Y. Lee, Morphology Studies of High Temperature Proton Conducting Membranes Containing Hydrophilic/Hydrophob ic Ionic Liquids, Macromolecules, 42, 2054-2062 (2009). https://doi.org/10.1021/ma8027112
  30. Susan M, Kaneko T, Noda A, Watanabe M, Ion Gels Prepared by in Situ Radical Poly merization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes, J. Am. Chem. Soc, 127, 4976-4983 (2005). https://doi.org/10.1021/ja045155b
  31. He Y, Li Z, Simone P, Lodge T. P, Self-Assembly of Block Copolymer Micelles in an Ionic Liquid, J. Am. Chem. Soc, 128, 2745-2750 (2006). https://doi.org/10.1021/ja058091t
  32. He Y, Lodge T. P, The Micellar Shuttle: Thermoreversible, Intact Transfer of Block Copolymer Micelles between an Ionic Liquid and Water, J. Am. Chem. Soc, 128, 12666-12667 (2006). https://doi.org/10.1021/ja0655587
  33. He Y. Y, Boswell P. G, Buhlmann P, Lodge T. P, Ion Gels by Self-Assembly of a Triblock Copolymer in an Ionic Liquid, J. Phys. Chem. B, 111, 4645-4652 (2007). https://doi.org/10.1021/jp064574n
  34. Simone PM, Lodge T. P, Micellization of PS-PMMA Diblock Copolymers in an Ionic Liquid, Macromol. Chem. Phys, 208, 339-348 (2007). https://doi.org/10.1002/macp.200600392
  35. Bai Z, He Y, Lodge T. P, Block Copolymer Micelle Shuttles with Tunable Transfer Temperatures between Ionic Liquids and Aqueous Solutions, Langmuir, 24, 5284-5290 (2008). https://doi.org/10.1021/la703848e
  36. Simone P. M, Lodge T. P, Lyotropic Phase Behavior of Polybutadiene−Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids, Macromolecules, 41, 1753-1759 (2008). https://doi.org/10.1021/ma702252v
  37. Gwee L, Choi J-H, Winey K. I, Elabd Y. A, Block Copolymer/Ionic Liquid Films: The Effect of Ionic Liquid Composition on Morphology and Ion Conduction, Polymer, 5, 5516-5524 (2010).
  38. Cheng H, Zhu C, Huang B, Lu M, Yang Y, Synthesis and Electrochemical Characterization of PEO-Based Polymer Electrolytes with Room Temperature Ionic Liquids, Electrochemical Acta, 52, 5789-5794 (2007). https://doi.org/10.1016/j.electacta.2007.02.062
  39. Thomas E. Sutto, Hydrophobic and Hydrophilic Interactions of Ionic Liquids and Polymers in Solid Polymer Gel Electrolytes J. Electrochem. Soc, 154, P101-P107 (2007). https://doi.org/10.1149/1.2767414
  40. 1. Dobbelin M, Marcilla R, Salsamendi M, Pozo-Gonzalo C, Carrasco PM, Pomposo JA, Mecerreyes D, Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT:PSS Films, Chem. Mater, 19, 2147-2149 (2007). https://doi.org/10.1021/cm070398z
  41. Bundgaard E, Krebs F. C, Low Band Gap Polymers for Organic Photovoltaics, Sol Energy Mater Sol Cells, 91, 954-985 (2007). https://doi.org/10.1016/j.solmat.2007.01.015
  42. Brabec C. J, Organic photovoltaics: technology and market, Sol Energy Mater Sol Cells, 83, 273-292 (2004). https://doi.org/10.1016/j.solmat.2004.02.030
  43. Krebs F. C, Spanggaard H, Significant Improvement of Polymer Solar Cell Stability, Chem. Mater, 17, 5235-5237 (2005). https://doi.org/10.1021/cm051320q
  44. Reyes-Reyes M, Kim K, Dewald J, Lopez-Sandoval R, Avadhanula A, Curran S, Carroll D. L, Meso-Structure Formation for Enhanced Organic Photovoltaic Cells, Org. Lett, 7, 5749-5752 (2005). https://doi.org/10.1021/ol051950y
  45. Hoppe H, Sariciftci N. S, Morphology of polymer/fullerene bulk heterojunction solar cells, J. Mater. Chem, 16, 45-61 (2006). https://doi.org/10.1039/b510618b
  46. I. T. Kim, J. H. Lee, S. W. Lee, New Low Band Gap Conjugated Conducting Poly (2-nonylthieno[3,4-d]thiazole): Synthesis, Characterization, and Properties, Bul. Korean. Chem. Soc, 28, 2511-2513 (2007). https://doi.org/10.5012/bkcs.2007.28.12.2511
  47. Hou J, Chen H. Y, Zhang S, Chen R. I, Yang Y, Wu Y, Li G, Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells, J. Am. Chem. Soc, 131, 15586-15587 (2009). https://doi.org/10.1021/ja9064975
  48. J. H. Kim, C. E. Song, I. N. Kang, W. S. Shin, D. H. Hwang, A Highly Crystalline Low Band-Gap Polymer Consisting of Perylene and Diketopyrrolopyrrole for Organic Photovoltaic Cells, Chem. Commun, 49, 3248-3250 (2013). https://doi.org/10.1039/c3cc41160e
  49. Dou L, You J, Yang J, Chen C-C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer, Nature Photonics, 6, 180-185(2012). https://doi.org/10.1038/nphoton.2011.356
  50. Tautz R, Como E. D, Limmer T, Feldmann J, Egelhaaf H. J, von Hauff E, Lemaur V, Beljonne D, Yilmaz S, Dumsch I, Allard S, Scherf U, Structural Correlations in The Generation of Polaron Pairs in Low-Bandgap Polymers for Photovoltaics, Nature Communications, 3:970. Doi: 10.1038/ncomms1967, 1-8 (2013).
  51. Boudreault P. T, Najari A, Leclerc M, Processable Low-Bandgap Polymers for Photovoltaic Applications" Chem. Mater, 23, 456-469 (2011). https://doi.org/10.1021/cm1021855
  52. Hou J, Chen H-Y, Zhang S, Li G, Yang Y, Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes And 2,1,3- Benzothiadiazole, J. Am. Chem. Soc, 130, 16144-16145 (2008). https://doi.org/10.1021/ja806687u
  53. Liang Y, Feng D, Wu Y, Tsai S. T, Li G, Ray C, Yu L, Highly Efficient Solar Cell Polymers Developed Via Fine-Tuning of Structural and Electronic Properties, J. Am. Chem. Soc, 131, 7792-7799 (2009) https://doi.org/10.1021/ja901545q
  54. Bijleveld J. C, Gevaerts V. S, Nuzzo D. D, Turbiez M, Mathijssen S. G. J, de Leeuw D. M, Wienk M. M, Janssen R. A. J, Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer, Adv. Mater, 22, E242-E246 (2010). https://doi.org/10.1002/adma.201001449
  55. Piliego C, Holcombe T. W, Douglas J. D, C. H. Woo, Beaujuge P. M, Frechet J. M. J, Synthetic Control of Structural Order in N-Alkylthieno[3,4-c] Pyrrole-4,6-dione-Based Polymers for Efficient Solar Cells, J. Am. Chem. Soc, 1. 132, 7595-7597 (2010).
  56. Pawley, J. B, Handbook of Biological Confocal Microscopy, Kluwer Academic Publisher s, Dordrecht, (1995).
  57. Crispin, X. Jakobsson, F. L. E. Crispin, A. Grim, P. C. M. Andersson, P. Volodin, A. van Haesendock, C. Van der Auweraer, M.; Salaneck, W. R, Berggren M, The Origin of the High Conductivity of Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (PEDOT−PSS) Plastic Electrodes, Chem. Mater, 18, 4354-4360 (2006). https://doi.org/10.1021/cm061032+
  58. Crispin X, Marciniak S, Osikowicz W, Zotti G, van der Gon A. W. D, Louwet F, Fahlman M, Groenendaal L, Schryver F. D, Salaneck W. R, Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study, J. Polym. Sci. Part B. Polym. Phys, 41, 2561-2583 (2003). https://doi.org/10.1002/polb.10659
  59. J. Y. Kim, J. H. Jung, D. E. Lee, J. Joo, Enhancement of Electrical Conductivity of Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a Change of Solvents, J. Synth. Met, 126, 311-316 (2002). https://doi.org/10.1016/S0379-6779(01)00576-8
  60. Ouyang J, Xu QF, Chu CW, Yang Y, Li G, Shinar J, On the Mechanism Of Conductivity Enhancement in Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film through Solvent Treatment, J. Polymer, 45, 8443-8450 (2004). https://doi.org/10.1016/j.polymer.2004.10.001
  61. Ouyang B. Y, Chi C. W, Chen F. C, Xu Q, Yang Y, High-Conductivity Poly(3,4-ethylenedio xythiophene):Poly (styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices, Adv. Funct. Mater, 15, 203-208 (2005). https://doi.org/10.1002/adfm.200400016