DOI QR코드

DOI QR Code

카본나노튜브 나노유체의 동점성계수 증가로 인한 관내 유동에서의 항력 감소

Drag Reduction Induced by Increased Kinematic Viscosity of Nanofluids Containing Carbon Nanotubes in A Horizontal Tube

  • 유지원 (포스코) ;
  • 정세권 (현대자동차) ;
  • 최만수 (서울대학교 기계항공공학부 멀티스케일 에너지 시스템 연구단)
  • Yu, Jiwon (POSCO) ;
  • Jung, Se Kwon (Hyndai Motor Group) ;
  • Choi, Mansoo (Division of WCU Multiscale Mechanical Design, School of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2013.12.10
  • 심사 : 2013.12.16
  • 발행 : 2013.12.30

초록

This article reports the drag reduction phenomenon of aqueous suspensions containing carbon nanotubes (CNTs) flowing through horizontal tubes. Stable nanofluids were prepared by using a surfactant. It is found that the drag forces of CNT nanofluids were reduced at specific flow conditions compared to the base fluid. It is found that the friction factor of CNT nanofluids was reduced up to approximately 30 % by using CNT nanofluids. Increased kinematic viscosities of CNT nanofluids are suggested to the key factors that cause the drag reduction phenomenon. In addition, transition from laminar to turbulent flow is observed to be delayed when CNT nanofluids flow in a horizontal tube, meaning that drag reduction occurs at higher flow rates, that is, at higher Reynolds numbers.

키워드

참고문헌

  1. Barnes, H. A., Hutton, J. F., and Walters, K. (1989) An introduction to rheology, Elsevier Science Publishers, New York
  2. Berber, S., Kwon, Y. K., and Tomanek, D. (2000). Unusually high thermal conductivity of carbon nanotubes, Physics Review Letter, 84, 4613-4616 https://doi.org/10.1103/PhysRevLett.84.4613
  3. Cho, J. (2003) Improved thermal stability of LiCoO2 by nanoparticle AlPO4 coating with respect to spinel Li1.05Mn1.95O4, Electrochemistry Communications, 5, 146-148 https://doi.org/10.1016/S1388-2481(03)00008-0
  4. Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters, 79, 2252-2254 https://doi.org/10.1063/1.1408272
  5. Ding, Y. L., Alias, H., Wen, D. S., and Williams, R. A. (2006). Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), International Journal of Heat and Mass Transfer, 49, 240-250 https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
  6. Draad, A. A., Kuiken, G. D. C., and Nieuwstadt, F. T. M. (1998). Laminar‐turbulent transition in pipe flow for Newtonian and non‐Newtonian fluids, Journal of Fluid Mechanics 377, 267-312 https://doi.org/10.1017/S0022112098003139
  7. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., and Thompson, L. J. (2001). Anomalously increased effective thermal conductivities of ethylene glycol‐based nanofluids containing copper nanoparticles, Applied Physics Letters, 78, 718-720. https://doi.org/10.1063/1.1341218
  8. Hirata, A., and Yoshioka, N. (2004). Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition, Tribology International, 37, 893-898 https://doi.org/10.1016/j.triboint.2004.07.005
  9. Hone, J., Whitney, M., Piskoti, C., and Zettl, A. (1999). Thermal conductivity of single‐walled carbon nanotubes, Physics Review B, 59, R2514-R2516
  10. Jang, S. P. and Choi, S. U. S. (2004). Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Applied Physics Letters, 84, 4316-4318. https://doi.org/10.1063/1.1756684
  11. Kim, P., Shi, L., Majumdar, A., and McEuen, P. L. (2001). Thermal transport measurements of individual multiwalled nanotubes, Physics Review Letter, 8721
  12. Ko, G. H., Heo, K., Lee, K., Kim, D. S., Kim, C., Sohn, Y., and Choi, M. (2007). An experimental study on the pressure drop of nanofluids containing carbon nanotubes in a horizontal tube, International Journal of Heat and Mass Transfer, 50, 4749-4753 https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.029
  13. Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A. (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles, Journal of Heat Transfer, 121, 280-289. https://doi.org/10.1115/1.2825978
  14. Potschke, P., Fornes, T. D., and Paul, D. R. (2002). Rheological behavior of multiwalled carbon nanotube/polycarbonate composites, Polymer 43, 3247-3255 https://doi.org/10.1016/S0032-3861(02)00151-9
  15. Suhr, J., Koratkar, N., Keblinski, P., and Ajayan, P. (2005). Viscoelasticity in carbon nanotube composites, Nature Materials, 4, 134-137 https://doi.org/10.1038/nmat1293
  16. White, F.M (2003) Fluid Mechanics, fifth ed., Macgraw- Hill, New York
  17. Xie, H., Wang, J., Xi, T., and Liu, Y. (2002). Thermal conductivity of suspensions containing nanosized SiC particles, International Journal of Thermophysics, 23, 571-580
  18. Xie, H. Q., Lee, H., Youn, W., and Choi, M. (2003). Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities, Journal of Applied Physics, 94, 4967-4971 https://doi.org/10.1063/1.1613374
  19. Xuan, Y. M. and Li, Q. (2000). Heat transfer enhancement of nanofluids, International Journal of Heat Fluid Flow, 21, 58-64. https://doi.org/10.1016/S0142-727X(99)00067-3