DOI QR코드

DOI QR Code

Evaluation of Anti-SE Bacteriophage as Feed Additives to Prevent Salmonella enteritidis (SE) in Broiler

  • Kim, K.H. (Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, G.Y. (Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jang, J.C. (Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, J.E. (CJ Cheiljedang Corporation) ;
  • Kim, Y.Y. (Department of Agriculture Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • Received : 2012.03.14
  • Accepted : 2012.07.31
  • Published : 2013.03.01

Abstract

This experiment was conducted to evaluate anti-Salmonella enteritidis (anti-SE) bacteriophage as feed additives to prevent Salmonella enteritidis in broilers. The experimental diets were formulated for 2 phases feeding trial, and 3 different levels (0.05, 0.1 and 0.2%) of anti-SE bacteriophage were supplemented in basal diet. The basal diet was regarded as the control treatment. A total of 320 1-d-old male broilers (Ross 308) were allotted by randomized complete block (RCB) design in 8 replicates with 10 chicks per pen. All birds were raised on rice hull bedding in ambient controlled environment and free access to feed and water. There were no significant differences in body weight gain, feed intake and feed conversion ratio (FCR) at terminal period among treatments (p>0.05). Relative weights of liver, spleen, abdominal fat and tissue muscle of breast obtained from each anti-SE bacteriophage treatment were similar to control, with a slightly higher value in anti-SE bacteriophage 0.2%. In addition, a numerical difference of glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and LDL cholesterol level was observed in the 0.2% anti-SE bacteriophage application even though blood profiles were not significantly affected by supplemented levels of anti-SE bacteriophage (p>0.05). In the result of a 14 d record after Salmonella enteritidis challenge of 160 birds from 4 previous treatments, mortality was linearly decreased with increasing anti-SE bacteriophage level (p<0.05), and Salmonella enteritidis concentration in the cecum was decreased with increasing levels of anti-SE bacteriophage (p<0.05). Based on the results of this study, it is considered that supplementation of 0.2% anti-SE bacteriophage may not cause any negative effect on growth, meat production, and it reduces mortality after Salmonella enteritidis challenge. These results imply to a possible use of anti-SE bacteriophage as an alternative feed additive instead of antibiotics in broilers diet.

Keywords

References

  1. Ackerman, H. W., A. Audurier, L. Berthiaume, L. A. Jones, J. A. Mayo and A. K. Vidaver. 1978. Guidelines for bacteriophage characterization. Adv. Virus Res. 23:1-24. https://doi.org/10.1016/S0065-3527(08)60096-2
  2. Altekruse, S. F., N. Bauer, A. Chanlongbutra, R. DeSagun, A. Naugle, W. Schlosser, R. Umholtz and P. White. 2006. Salmonella enteritidis in broiler chickens, United States, 2000-2005. Emerg. Infect. Dis. 12:1848-1852. https://doi.org/10.3201/eid1212.060653
  3. Barrow, P. A. 1991. Experimental infection of chickens with Salmonella enteritidis. Avian Pathol. 20:145-153. https://doi.org/10.1080/03079459108418749
  4. Barrow, P., M. Lovell and A. Jr. Berchieri. 1998. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5:294-298.
  5. Barrett-Conner, E., L. Suarez. 1982. A community study of alcohol and other factors associated with the distribution of high density lipoprotein cholesterol in older vs. younger men. Am. J. Epidemiol. 115:888-893.
  6. Barrow, P. A. and M. A. Lovell. 1991. Experimental infection of egg-lying hens with Salmonella enteritidis phage type 4. Avian Pathol. 20:335-348. https://doi.org/10.1080/03079459108418769
  7. Berchieri, A., M. A. Lovell and P. A. Barrow. 1991. The activity in the chicken alimentary tract of bacteriophage lytic for Salmonella typhimurium. Res. Microbiol. 142:541-549. https://doi.org/10.1016/0923-2508(91)90187-F
  8. Berrang, M. E., J. S. Bailey, S. F. Altekruse, W. K. Shaw, B. L. Jr, Patel., R. J. Meinersmann and P. J. Fedorka-Cray. 2009. Prevalence, serotype, and antimicrobial resistance of Salmonella on broiler carcasses postpick and postchill in 20 U.S. processing plants. J. Food. Prot. 72:1610-1615.
  9. Borie, C., L. Albala, P. Sánchez, M. L. Sánchez, S. Ramírez, C. Navarro, M. A. Morales, J. Retamales and J. Robeson. 2008b. Bacteriophage treatment reduce Salmonella colonization of infected chickens. Avian Dis. 52:64-67. https://doi.org/10.1637/8091-082007-Reg
  10. Carlton, R. M. 1999. Phage therapy: past history and future prospects. Arch. Immunol. Ther Exp. Warsz. 47:267-274.
  11. Chung, Y. H., S. Y. Kim and Y. H. Chang. 2003. Prevalence and antibiotic susceptibility of Salmonella isolated from foods in Korea from 1993 to 2001. J. Food. Prot. 66:1154-1157.
  12. Dhillon, A. S., B. Alisantosa., H. L. Shivaprasad., O. Jack., D. Schaberg and D. Bandli. 1999. Pathogenicity of Salmonella enteritidis phage types 4, 8, and 23 in broiler chicks. Avian. Dis. 43:506-515. https://doi.org/10.2307/1592649
  13. Duchet-Suchaux, M., P. Le chopier, J. Marly, P. Bernardet, R. Delaunay and P. Pardon. 1995. Quantification of experimental Salmonella enteritidis carrier state in B13 leghorn chicks. Avian. Dis. 39:796-803. https://doi.org/10.2307/1592416
  14. Foley, S. L., A. M. Lynne and R. Nayak. 2008. Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J. Anim. Sci. 86:149-162.
  15. Golden, N. J., H. H. Marks, M. E. Coleman, C. M. Schroeder, N. E. Jr. Bauer and W. D. Schlosser. 2008. Review of induced molting by feed removal and contamination of eggs with Salmonella enterica serovar enteritidis. Vet. Microbiol. 131:215-228. https://doi.org/10.1016/j.vetmic.2008.03.005
  16. Gong, J. H., W. D. Si, R. J. Forster, R. L. Huang, H. Yu, Y. L. Yin, C. B. Yang and Y. M. Han. 2007. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol. Ecol. 59:147-157. https://doi.org/10.1111/j.1574-6941.2006.00193.x
  17. Huang, R. L., Y. L. Yin, M. X. Li, G. Y. Wu, T. J. Li, L. L. Li, C. B. Yang, J. Zhang, B. Wang, Z. Y. Deng, Y. G. Zhang, Z. R. Tang, P. Kang and Y. M. Guo. 2007. Dietary oligochitosan supplementation enhances immune status of broilers. J. Sci. Food Agric. 87:153-159. https://doi.org/10.1002/jsfa.2694
  18. Hudson, C. R., M. Garcia, R. K. Gast and J. J. Maurer. 2001. Determination of close genetic relatedness of the major Salmonella enteritidis phage types by pulsed-field gel electrophoresis and DNA sequence analysis of several Salmonella virulence genes. Avian Dis. 45:875-886. https://doi.org/10.2307/1592867
  19. Huff, W. E., G. R. Huff, N. C. Rath, J. M. Balog and A. M. Donoghue. 2003. Evaluation of aerosol spray and intramuscular injection of bacteriophage to treat an Escherichia coli respiratory infection. Poult. Sci. 82:1108-1112. https://doi.org/10.1093/ps/82.7.1108
  20. Huff, W. E., G. R. Huff, N. C. Rath, J. M. Balog and A. M. Donoghue. 2005. Alternatives to antibiotics: utilization of bacteriophage to treat colibacillosis and prevent food pathogens. Poult. Sci. 84:655-659. https://doi.org/10.1093/ps/84.4.655
  21. Jeorger, R. D. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82:640-647. https://doi.org/10.1093/ps/82.4.640
  22. Korean-Ministry-for-Agriculture-and-Forestry. 2002. Korean Feeding Standards for Poultry. K. M. f. A. a. Forestry, ed.
  23. Li, L. L., Z. P. Hou, C. B. Yang, G. Y. Wu, R. L. Huang, Z. R. Tang, J. H. Gong, H. Yu, T. J. Li, X. F. Kong, C. F. Pan, J. Deng, X. Q. Wang, G. Yin and Y. L. Yin. 2008. Effects of probiotic supplementation on ileal digestibility of nutrients and growth performance in 1-d-old to 42-d-old broilers. J. Sci. Food Agric. 88:135-142.
  24. Lim, T. H., H. J. Lee, M. S. Kim, B. Y. Kim, S. Y. Yang and C. S. Song. 2010. Evaluation of efficacy of bacteriophage CJo07 against Salmonella enteritidis infection in the SPF chicks. Korean. J. Poult. Sci. 37:283-287. https://doi.org/10.5536/KJPS.2010.37.3.283
  25. Lister, S. A. 1988. Salmonella enteritidis infection in broilers and broiler breeders. Vet. Rec. 123:350. https://doi.org/10.1136/vr.123.13.350
  26. Lumeiji, J. T. 1997. Avian clinical biochemistry. In: Clinical Biochemistry of Domestic Animals (Ed. J. J. Kaneko, J. W. Harvey and M. L. Bruss). 5th ed. Academic Press, pp. 857-883.
  27. Mathur, M. D., S. Bidhani and P. L. Mehndiratta. 2003. Bacteriophage therapy: an alternative to conventional antibiotics. J. Assoc. Physicians India 51:593-596.
  28. Merril, C. M. 2008. Interaction of bacteriophages with animals. In: Bacteriophage ecology, Cambridge Press. pp. 332-360.
  29. Molbak, K. and J. Neimann. 2002. Risk factors for sporadic infection with Salmonella enteritidis, Denmark, 1997-1999. Am. J. Epidemiol. 156:654-661. https://doi.org/10.1093/aje/kwf096
  30. Molenaar, T. J., I. Michon, S. A. de Haas, T. J. Van Berkel, J. Kuiper and E. A. Biessen. 2002. Uptake and processing of modified bacteriophage M13 in mice: implications for phage display. Virology 293:182-191. https://doi.org/10.1006/viro.2001.1254
  31. Oliveira, A., S. Sillankorva, R. Quinta, A. Henriques, R. Sereno and J. Azeredo. 2009. Isolation and characterization of bacteriophages for avian pathogenic E. coli strains. J. Appl. Microbiol. 106:1919-1927. https://doi.org/10.1111/j.1365-2672.2009.04145.x
  32. Sklar, I. B. and R. D. Joerger. 2001. Attempts to utilize bacteriophage to combat Salmonella enterica serovar enteritidis infection in chickens. J. Food. Saf. 21:15-29. https://doi.org/10.1111/j.1745-4565.2001.tb00305.x
  33. Shah, D. H., X. Zhou, T. Addwebi, M. A. Davis, L. Orfe, R. D. Call, T. Guard and E. Besser. 2011. Cell invasion of poultry-associated Salmonella enterica serovar Enteritidis isolates is associated with pathogenicity, motility and proteins secreted by the type III secretion system. Microbiology 157:1428-1445. https://doi.org/10.1099/mic.0.044461-0
  34. St Louis, M. E., D. L. Morse, M. E. Potter, T. M. DeMelfi, J. J. Guzewich, R. V. Tauxe and P. A. Blake. 1988. The emergence of grade an eggs as a major source of Salmonella enteritidis infections. New implications for the control of salmonellosis. J. Am. Med. Assoc. 259:2103-2107. https://doi.org/10.1001/jama.1988.03720140023028
  35. Sulakvelidze, A. and E. Kutter. 2005. Bacteriophage therapy in humans. In: Bacteriophages: Biology and Applications, CRC Press. Boca, Rutan, FL, pp. 381-436.
  36. Sulakvelidze, A. and P. Barrow. 2005. Phage Therapy in Animals and Agribusiness. In: Bacteriophages: Biology and Applications, CRC Press. Boca, Rutan, FL, pp. 335-380.
  37. Suzuki, S. 1994. Pathogenicity of Salmonella enteritidis in poultry. Int. J. Food. Microbiol. 21:89-105. https://doi.org/10.1016/0168-1605(94)90203-8
  38. Velge, P., A. Cloeckaert and P. Barrow. 2005. Emergence of Salmonella epidemics: the problems related to Salmonella enterica serotype enteritidis and multiple antibiotic resistance in other major serotypes. Vet. Res. 36:267-288. https://doi.org/10.1051/vetres:2005005
  39. Yongsheng, M., J. Pacan, Q. Wang, Y. Xu, X. Huang, A. Korenevsky and P. Sabour. 2008. Microencapsulation of bacteriophage felix O1 into chitosan alginate microspheres for oral delivery. Appl. Environ. Microbiol. 74:4799-4805. https://doi.org/10.1128/AEM.00246-08

Cited by

  1. Alternatives to antibiotics in poultry feed: molecular perspectives pp.1549-7828, 2017, https://doi.org/10.1080/1040841X.2017.1373062
  2. In-feed resin acids reduce matrix metalloproteinase activity in the ileal mucosa of healthy broilers without inducing major effects on the gut microbiota vol.50, pp.1, 2019, https://doi.org/10.1186/s13567-019-0633-3
  3. Effect of dietary supplementation of bacteriophage on performance, egg quality and caecal bacterial populations in laying hens vol.56, pp.1, 2013, https://doi.org/10.1080/00071668.2014.991272
  4. Prophage induction reduces Shiga toxin producing Escherichia coli (STEC) and Salmonella enterica on tomatoes and spinach: A model study vol.89, pp.None, 2013, https://doi.org/10.1016/j.foodcont.2018.02.001
  5. Comprehensive Evaluation of the Safety and Efficacy of BAFASAL ® Bacteriophage Preparation for the Reduction of Salmonella in the Food Chain vol.12, pp.7, 2013, https://doi.org/10.3390/v12070742
  6. Bacteriophage in-feed application: A novel approach to preventing Salmonella Enteritidis colonization in chicks fed experimentally contaminated feed vol.29, pp.4, 2020, https://doi.org/10.1016/j.japr.2020.09.003
  7. Efficacy of Salmonella Bacteriophage S1 Delivered and Released by Alginate Beads in a Chicken Model of Infection vol.13, pp.10, 2013, https://doi.org/10.3390/v13101932