DOI QR코드

DOI QR Code

수치모의를 통한 해운대 이안류에 대한 해상요소의 영향 연구: 파주기, 파고, 파향, 조위

Numerical Study on Sea State Parameters Affecting Rip Current at Haeundae Beach : Wave Period, Height, Direction and Tidal Elevation

  • 최준우 (한국건설기술연구원 수자원.환경연구본부 하천해안연구실) ;
  • 신충훈 (한양대학교 대학원 건설환경공학과) ;
  • 윤성범 (한양대학교 건설환경공학과)
  • Choi, Junwoo (River and Coastal Research Division, Water Resources & Environment Research Department, Korea Institute of Construction Technology) ;
  • Shin, Choong Hun (Department of Civil & Env. Engrg., Hanyang University) ;
  • Yoon, Sung Bum (Department of Civil & Env. Engrg., Hanyang University)
  • 투고 : 2012.08.28
  • 심사 : 2012.10.18
  • 발행 : 2013.02.28

초록

Boussinesq 모형인 FUNWAVE를 사용한 수치모의 결과를 바탕으로, 파고, 주기, 파향 및 조위와 같은 파랑특성 변수에 따라 해운대 이안류의 발생가능 정도를 추정하였다. 2011년 6월 12일에 발생한 이안류를 수치모의하여 이안류 발생 가능정도를 확인함으로써 정량화 기법을 제시한다. 이 이안류 발생정도의 정량화 기법은 다음의 절차를 따른다. 첫째로, 광범위하게 파고, 주기, 파향, 조위를 변화시키며 불규칙파를 해운대 수심지형에 적용하여 해운대 연안흐름을 수치모의 하였다. 둘째로, 이 수치모의 결과로부터 연안의 직각방향(cross shore direction)의 2주기 시간평균된 유속성분을 추출하고, 연안영역에 대하여 이 유속값의 심해방향 최대값을 그 영역의 '이안류 유속'으로 정의하였다. 셋째로, 전체 수치모의 시간에 대한 '이안류 유속' 시계열이 임의의 위험유속을 초과한 시간의 비를 위험 이안류 발생 가능 정도로 정의하여 정량화하였다. 추정된 이안류 발생정도에 따른 분석으로부터, 파고가 클수록, 주기가 길수록, 조위가 낮을수록 이안류가 더 잘 발생하는 것으로 나타났으며, 파향은 남동쪽보다 남서쪽 파향에서 조금 더 이안류가 잘 발생하는 것으로 나타났다.

The likelihood of rip current at Haeundae beach according to wave parameters, such as wave height, period, direction, and tidal elevation, was estimated by using numerical simulations with a Boussinesq model, FUNWAVE. To examine the estimation, the rip current occurred on 12th June, 2011 at Haeundae beach was simulated based on observations. For the estimation, the following procedure was carried out. First, extensive numerical simulations of nearshore circulations are performed under various random sea conditions according to the wave parameters. Second, from the numerical results, cross shore components of two-wave-period averaged velocities over the nearshore area were computed, and their seawardly maximum was defined as rip current velocity of the area. Third, using time series of the rip current velocity, we computed the ratio of the simulation time and the time period in which the rip current velocity exceed a threshold velocity for rip-current accidents, and thus the ratio was quantified as the likelihood of rip current at Haeundae beach for the input wave parameters. From the resultant estimations, it was found that the rip current likelihood increases as wave height and period increase, and tidal elevation decreases.

키워드

참고문헌

  1. Aagaard, T., Greenwood, B., and Nielsen, J. (1997). "Mean currents and sediment transport in a rip channel." Mar. Geol., Vol. 140, No. 1-2, pp. 25-45. https://doi.org/10.1016/S0025-3227(97)00025-X
  2. Bowen, A. (1969). "Rip currents 1. Theoretical investigations." J. Geophys. Res., Vol. 74, No. 23, pp. 5467- 5478. https://doi.org/10.1029/JC074i023p05467
  3. Bowen, A., and Inman, D. (1969). "Rip currents 2. Laboratory and field observations." J. Geophys. Res., Vol. 74, No. 23, pp. 5479-5490. https://doi.org/10.1029/JC074i023p05479
  4. Brander, R.W., and Short, A.D. (2001). "Flow kinematics of low-energy rip current systems." J. Coast. Res., Vol. 17, No. 2, pp. 468-481.
  5. Chen, Q., Dalrymple, R., Kirby, J., Kennedy, A., and Haller, M. (1999). "Boussinesq modelling of a rip current system." J. Geophys. Res., Vol. 104, No. C9, pp. 20617- 20637. https://doi.org/10.1029/1999JC900154
  6. Chen, Q., Kirby, J.T., Dalrymple, R.A., Kennedy, A., and Chawla, A. (2000). "Boussinesq modeling of wave transformation, breaking and runup. II: 2d." J. Wtrwy., Port, Coast. and Ocean Eng., Vol. 126, No. 1, pp. 48- 56. https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(48)
  7. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F., and Thornton, E.B. (2003). "Boussinesq modeling of longshore current." J. Geophys. Res., Vol. 108, No. C11, pp. 3362- 3379. https://doi.org/10.1029/2002JC001308
  8. Choi, J., and Yoon, S.B. (2011). "Numerical simulation of nearshore circulation on field topography in a random wave environment." Coastal Engineering, Vol. 58, pp. 395-408. https://doi.org/10.1016/j.coastaleng.2010.12.002
  9. Choi, J., Park, W.K., and Yoon, S.B. (2011). "Boussinesq Modeling of a Rip Current at Haeundae Beach." J. Korean Society of Coastal and Ocean Engineers, Vol. 23, No. 4, pp. 276-284. https://doi.org/10.9765/KSCOE.2011.23.4.276
  10. Choi, J., Park, W.K., Bae, J.S., and Yoon, S.B. (2012). "Numerical Study on a Dominant Mechanism of Rip Current at Haeundae Beach: Honeycomb Pattern of Waves." Journal of the Korean Society of Civil Engineers, Vol. 32, No. 5B, pp. 321-329. https://doi.org/10.12652/Ksce.2012.32.5B.321
  11. Dalrymple, R.A. (1975). "A mechanism for rip current generation on an open coast." J. Geophys. Res., Vol. 80, No. 24, pp. 3485-3487. https://doi.org/10.1029/JC080i024p03485
  12. Dalrymple, R.A. (1978). Rip currents and their causes. 16th international Conference of Coastal Engineering, Hamburg, pp. 1414-1427.
  13. Dalrymple, R.A., and Lozano, C. (1978). "Wave current interaction models for rip currents." J. of Geophys. Res., Vol. 83, No. C12, pp. 6063-6071. https://doi.org/10.1029/JC083iC12p06063
  14. Goda, Y. (2010). Random seas and Design ofMaritime Structures, 3rd Ed., Advanced Series on Ocean Eng., 33, World Scientific Publishing Co. Pte. Ltd.
  15. Haas, K., Svendsen, I., Haller, M., and Zhao, Q. (2003). "Quasi-three-dimensional modeling of rip current systems." J. Geophys. Res., Vol. 108, No. C7, p. 3217, doi:10.1029/2002JC001355.
  16. Haller, M.C., Dalrymple, R.A., and Svendsen, I.A. (1997). Modeling rip currents and nearshore circulation, paper presented at Ocean Wave measurement and Analysis, Am. Soc. of Civ. Eng., Virginia Beach, VA.
  17. Johnson, D., and Pattiaratchi, C. (2006). "Boussinesq modelling of transient rip currents." Coastal Engineering, Vol. 53, pp. 419-439. https://doi.org/10.1016/j.coastaleng.2005.11.005
  18. Kim, I.C., Lee, J.Y., and Lee, J.L. (2011). "Generation Mechanism and Numerical Simulation of Rip Current at Haeundae Beach." Journal of the Korean Society of Coastal and Ocean Engineers, Vol. 23, No. 1, pp. 70-78. https://doi.org/10.9765/KSCOE.2011.23.1.070
  19. Kuik, A.J., van Vledder, G.Ph., and Holthuisen, L.H. (1988). "A method for the routine analysis of pitchand- roll buoy wave data." J. Phys. Oceanogr., Vol. 18, No. 7, pp. 1020-1034. https://doi.org/10.1175/1520-0485(1988)018<1020:AMFTRA>2.0.CO;2
  20. Lee, J.C., and Kim, D.H. (2010). "Physical Environments of Suyong Bay during the Rip Current Events at Haeundae-August 2009" Journal of the Korean Society of Oceanography, Vol. 15, No. 3, pp. 110-114.
  21. Longuet-Higgins, M.S., Cartwright, D.E., and Smith, N.D. (1963). Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean wave spectra, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 111-136.
  22. Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., and Rikiishi, K. (1975). "Observations of the directional spectrum of ocean waves using a cloverleaf buoy." J. Phys. Oceanogr., Vol. 5, No. 4, pp. 750-760. https://doi.org/10.1175/1520-0485(1975)005<0750:OOTDSO>2.0.CO;2
  23. Noda, E.K. (1974). "Wave induced nearshore circulation." J. Geophys. Res., Vol. 79, pp. 4097-4106. https://doi.org/10.1029/JC079i027p04097
  24. Shepard, F.P. (1936). Undertow, rip tide or "rip current," Science, Vol. 21, pp. 181-182.
  25. Tang, E.-S., and Dalrymple, R.A. (1989). "Nearshore circulation: rip currents and wave groups." Advances in Coastal and Ocean Engineering. Plenum Press, New York, pp. 205-230.
  26. Wei, G., Kirby, J., Grilli, S.T., and Subraymanya, R. (1995). "A fully non-linear Boussinesq model for surface waves: I. Highly non-linear, unsteady waves." J. Fluid Mech., Vol. 294, pp. 71-92. https://doi.org/10.1017/S0022112095002813
  27. Yoon, S.B., Kwon, S.J., Bae, J.S., and Choi, J. (2012). "Investigation of Characteristics of Rip Current at Haeundae Beach based on Observation Analysis and Numerical Experiments." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 4B, pp. 243-251.
  28. Yu, J., and Slinn, D. (2003). "Effects of wave-current interaction on rip currents." J. Geophys. Res., Vol. 108, No. C3, p. 3088, doi:10.1029/2001JC001105.

피인용 문헌

  1. Numerical Study of Rip Current Generation Mechanism at Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-032.1
  2. A Rip Current Warning System Based on Real-Time Observations for Haeundae Beach, Korea vol.72, 2014, https://doi.org/10.2112/SI72-011.1
  3. Study of Rip Current Warning Index Function according to Real-time Observations at Haeundae Beach in 2012 vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1191
  4. Numerical Study on Rip Current Likelihood according to the Beach Nourishment in the Haeundae Coast vol.15, pp.5, 2015, https://doi.org/10.9798/KOSHAM.2015.15.5.239
  5. Numerical Simulations of Rip Currents Under Phase-Resolved Directional Random Wave Conditions vol.27, pp.4, 2015, https://doi.org/10.9765/KSCOE.2015.27.4.238
  6. Study of Rip Current Warning Index Function Varied according to Real-time Observations vol.46, pp.5, 2013, https://doi.org/10.3741/JKWRA.2013.46.5.477
  7. Numerical simulations of rip currents off arc-shaped coastlines vol.37, pp.3, 2018, https://doi.org/10.1007/s13131-018-1197-1