DOI QR코드

DOI QR Code

봉의꼬리를 이용한 논토양의 비소정화에 미치는 차광처리의 영향

Effect of Shading Treatment on Arsenic Phytoremadiation Using Pteris multifida in Paddy Soil

  • Kwon, Hyuk Joon (Department of Horticultural Science, Chungbuk National University) ;
  • Cho, Ju Sung (Department of Horticultural Science, Chungbuk National University) ;
  • Lee, Cheol Hee (Department of Horticultural Science, Chungbuk National University)
  • 투고 : 2012.11.23
  • 심사 : 2013.02.01
  • 발행 : 2013.02.28

초록

본 연구는 중금속으로 오염된 논토양에서 비소 흡수능이 우수한 봉의꼬리(Pteris multifuda)를 재배할 때 차광처리가 봉의꼬리의 생육과 토양 내 비소 흡수에 미치는 영향을 분석하기 위하여 수행하였다. 비소로 오염된 (구)장항제련소 인근의 논토양에서 수행하였으며, 각 실험구의 크기를 $2{\times}2m$로 조성하였고, 동일한 생육단계의 봉의꼬리를 $20{\times}20cm$ 간격으로 식재하여 24주간 재배하였다. 차광조건에 따른 봉의꼬리의 생육을 조사하였고, 식물체 내 비소 축적량 및 토양의 비소 변화량은 ICP를 이용하여 분석하였다. 연구의 결과, 중금속으로 오염된 논토양에서 차광에 의한 봉의꼬리의 생육은 무차광에 비해 차광 처리구에서 왕성하였다. 봉의꼬리 지상부의 비소 축적량은 차광($140.9mg{\cdot}kg^{-1}$)에 비해 무차광 처리구($169.8mg{\cdot}kg^{-1}$)에서 다소 높았으며, 지하부의 비소 축적량은 비슷한 경향을 보였다. 그러나 생육은 70% 차광 처리구에서 월등히 우수하여, 토양에서 흡수한 비소의 함량은 차광처리구에서 오히려 더 많았다. 봉의꼬리의 비소 이동계수(TR)는 차광처리에 관계없이 0.87~0.89로 매우 높아 흡수한 비소를 지상부로 빠르게 이동시키므로 생육 후 지상부의 제거처리에 의해 토양 내의 비소를 효과적으로 제거할 수 있으리라 생각된다.

This study was conducted to analyse the effectiveness of shading on growth and arsenic absorption of Pteris multifida, known as hyperaccumulator of arsenic, from paddy soils contaminated with heavy metals. Study was carried out in paddy soil polluted by arsenic near the former Janghang smelter. P. multifuda in the same growth stage was planted with $20{\times}20cm$ intervals in each experimental plot ($2{\times}2m$), and cultivated for 24 weeks. The growth of P. multifuda according to shading conditions was evaluated, the accumulated amount of arsenic in plants and arsenic variation in the soil was analyzed using ICP. In the result of this study, the growth of P. multifida cultivated under shading treatment was vigorous than non-shading. Accumulated amount of arsenic in aerial parts of P. multifida cultivated under non-shading ($169.8mg{\cdot}kg^{-1}$) was slightly higher than shading ($140.9mg{\cdot}kg^{-1}$), and those in underground part were almost the same. But the growth was great in 70% shading treatment. Therefore, arsenic contents absorbed from soils was much higher in shading treatment. Arsenic translocation rate (TR) of P. multifida was very high (0.87~0.89) regardless of shading conditions. So arsenic in soil could be efficiently eliminated by removal of aerial parts.

키워드

참고문헌

  1. Alloway, B.J. 1995. Heavy Metals in Soils. Blackie Academic and Professional, London, UK. p. 354.
  2. Boardman, N.K. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28:355-377. https://doi.org/10.1146/annurev.pp.28.060177.002035
  3. Boffetta, P. 1993. Carcinogenicity of trace elements with reference to evaluations made by the international agency for research on cancer. Scand. J. Work Environ. Health 19:67-70.
  4. Burkholder, P. 1936. The role of light in the life of plants. Bot. Rev. 2:1-53. https://doi.org/10.1007/BF02869924
  5. Choi, K.O. 2007. The growth responses and phytosynthetic activity of autogenous evergreen fern under light intensity. J. Kor. Soc. People Plants Environ. 10(4):1-8 (in Korean).
  6. Du W.B., Z.A. Li, B. Zou and S.L. Peng. 2005. Pteris multifida Poir., a new arsenic hyperaccumulator: characteristics and potential. Int. J. Environ. Pollut. 23:388-396. https://doi.org/10.1504/IJEP.2005.007601
  7. Enterline, P.E. and G.M. Marsh. 1982. Cancer among workers exposed to arsenic and other substances in a copper smelter. Am. J. Epidemiol. 116:895-911. https://doi.org/10.1093/oxfordjournals.aje.a113492
  8. EPA. 2000. Introduction to phytoremediation. National Risk Management Research Laboratory Office of Research and Development U.S.
  9. Isanogle, I.J. 1944. Effect of controlled shading upon the development of leaf structure in two deciduous tree species. Ecology 25:404-413. https://doi.org/10.2307/1932015
  10. Jarup, L. and G. Pershagen. 1991. Arsenic exposure, smoking, and lung cancer in smelter workers-a case-control sutdy. Am. J. Epidemiol. 134:545-551. https://doi.org/10.1093/oxfordjournals.aje.a116128
  11. Ju, Y.K. 2011. Selection of plants for phytoremediation of soils contaminated with heavy metals. M.S. Diss., Chungbuk Nat. Univ., Cheongju. (in Korean).
  12. Ju, Y.K., H.J. Kwon, J.S. Cho, S.L. Shin, T.S. Kim, S.B. Choi and C.H. Lee. 2011. Growth and heavy metal absorption capacity of Aster koraiensis Nakai acording to types of land use. Korean J. Plant Res. 24(1):48-54 (in Korean). https://doi.org/10.7732/kjpr.2011.24.1.048
  13. Jung, G.B., W.I. Kim. J.S. Lee and K.M. Kim. 2002. Phytoremediation of soils contamination with heavy metal by long-term cultivation. Kor. J. Environ. Agri. 21:31-37 (in Korean). https://doi.org/10.5338/KJEA.2002.21.1.031
  14. Kim, J.G. and S.H. Lee. 1999. Phytoremediation, Proc. Symp. 'Remediation Technology'. Kor. Soc. Environ. Agric. 29: 58-88 (in Korean).
  15. Kim, J.G., S.K. Lim, S.H. Lee, Y.M. Yoon, C.H. Lee and C.Y. Jeong. 1999. Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremedation of heavy metal contaminated soils. Kor. Soc. Environ. Agric. 18(1):28-34 (in Korean).
  16. Kim, Y.J., and J.S. Lee. 1978. Studies on the exploitation of shade tolerant ground-cover plants (1): growth behavior of several ground covers under controlled shadings. J. Kor. Soc. Hort. Sci. 19:167-171 (in Korean).
  17. Kor. Fern Soc. 2005. Fern and fern allies of Korea. Geobook. p. 152 (in Korean).
  18. Lee, J.Y. 2008. Development of organic and inorganic acid-based soil washing system for heavy metals contaminated soil and feasibility study. Ph.D. Diss. Hanyang Univ. Seoul. (in Korean).
  19. Moon, W. and H.K. Pyo. 1981. Effects of various levels of shade on the growth of some cool season vegetables. J. Kor. Soc. Hort. Sci. 21:153-159 (in Korean).
  20. Oh, W.K. 2005. A feasibility study on Pteris multifida pior. for the phytoremediation of arsenic contaminated mine soil. MS Diss., Seoul Univ., Seoul.
  21. Park, Y.H. 1994. Management practices of inactive and abandoned metalliferous mine areas in Korea. Kor. Environ. Technology & Research. KETRI/1994/RE-14, Seoul, Korea (in Korean).
  22. Salt, D.E., M. Blaylock, N.P.B.A. Kumar, S. Dushenkov, B.D. Ensley, I. Chet and I. Raskin. 1995. Phytoremediation. A novel strategy for the removal of toxic metals from the environment using plants. Bio. Tech. 13:468-474. https://doi.org/10.1038/nbt0595-468
  23. Srivastava, M., L.Q. Ma and J.A.G. Santos. 2006. Three new arsenic hyperaccumulating ferns. Sci. Total Environ. 364: 24-31. https://doi.org/10.1016/j.scitotenv.2005.11.002
  24. Suh, J.T., D.L. Yoo, H.S. Lee, C.W. Nam and S.J. Kim. 2006. Effects of culture soil combinations on growth of Pteris multifida, Cyrtomium falcatum and Cheilanthes argentea. Korean J. Plant Res. 19:517-520 (in Korean).
  25. Suh, J.T., D.L. Yoo, H.S. Lee, C.W. Nam, S.J. Kim and W.B. Kim. 2006. Effects of shading degree on the growth of Pteridophyte on rain-shelter. Kor. J. Interior Landscape 8(2):23-27 (in Korean).
  26. Tkumome, S. and M. Kuratsune. 1976. A cohort study on mortality from cancer and other causes among workers at a metal refinery. Int. J. Cancer 17:310-317. https://doi.org/10.1002/ijc.2910170306
  27. Wang, H.B., Z.H. Ye, W.S. Shu, W.C. Li, M.H. Wong and C.Y. Lan. 2006. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of Southern China: field surveys. Int. J. Phytoremediation 8:1-11. https://doi.org/10.1080/16226510500214517
  28. Wang, H.B., M.H. Wong, C.Y. Lan, A.J.M. Baker, Y.R. Qin, W.S. Shu, G.Z. Chen and Z.H. Ye. 2007. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ. Pollut. 145:225-233. https://doi.org/10.1016/j.envpol.2006.03.015
  29. Weaver, J.E. and F.E. Clements. 1966. Plant ecology. McGraw-Hill Publishing Co., New York, USA.
  30. Wei, C.Y., C. Wang, X. Sun and W.Y. Wang. 2007. Arsenic accumulation by ferns: a field survey in southern China. Environ. Geochem. Health 29:169-177. https://doi.org/10.1007/s10653-006-9046-0
  31. Yoo, Y.K. and K.S. Kim. 1997. Effects of shading on the growth in Hibiscus syriacus L. J. Kor. Soc. Hort. Sci. 38:520-526 (in Korean).
  32. You, J.H., Y.H. Jin, H.W. Won and C.H. Lee. 2005. Effect of shading ratio on growth of Korean native ferns. J. Kor. Flower Res. Soc. 13:90-96 (in Korean).
  33. Zhang, W., Y. Cai, C. Tu and L.Q. Ma. 2002. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total n. 300:167-177. https://doi.org/10.1016/S0048-9697(02)00165-1

피인용 문헌

  1. Effect of Arsenic Types in Soil on Growth and Arsenic Accumulation of Pteris multifida vol.27, pp.4, 2014, https://doi.org/10.7732/kjpr.2014.27.4.344
  2. Effect of Sulfur Powder and Citric Acid on Arsenic Phytoremediation Using Pteris multifida in Forest Soil vol.17, pp.1, 2014, https://doi.org/10.13087/kosert.2014.17.1.001
  3. 중금속 오염토양 정화에 영향을 미치는 봉의꼬리(Pteris multifida Poir.)와 쑥(Artemisia princeps Pamp.)의 혼합식재 비율 vol.30, pp.2, 2013, https://doi.org/10.7732/kjpr.2017.30.2.160