DOI QR코드

DOI QR Code

Surface and Adsorption Properties of Activated Carbon Fabric Prepared from Cellulosic Polymer: Mixed Activation Method

  • Bhati, Surendra (Department of Chemistry, Govt. Narmada P.G. College, Barkatullah University) ;
  • Mahur, J.S. (Department of Chemistry, Govt. Narmada P.G. College, Barkatullah University) ;
  • Dixit, Savita (Department of Applied Chemistry, Maulana Azad National Institute of Technology) ;
  • Choubey, O.N. (Department of Chemistry, Govt. Narmada P.G. College, Barkatullah University)
  • Received : 2012.10.02
  • Accepted : 2012.11.22
  • Published : 2013.02.20

Abstract

In this study, activated carbon fabric was prepared from a cellulose-based polymer (viscose rayon) via a combination of physical and chemical activation (mixed activation) processes by means of $CO_2$ as a gasifying agent and surface and adsorption properties were evaluated. Experiments were performed to investigate the consequence of activation temperature (750, 800, 850 and $925^{\circ}C$), activation time (15, 30, 45 and 60 minutes) and $CO_2$ flow rate (100, 200, 300 and 400 mL/min) on the surface and adsorption properties of ACF. The nitrogen adsorption isotherm at 77 K was measured and used for the determination of surface area, total pore volume, micropore volume, mesopore volume and pore size distribution using BET, t-plot, DR, BJH and DFT methods, respectively. It was observed that BET surface area and TPV increase with rising activation temperature and time due to the formation of new pores and the alteration of micropores into mesopores. It was also found that activation temperature dominantly affects the surface properties of ACF. The adsorption of iodine and $CCl_4$ onto ACF was investigated and both were found to correlate with surface area.

Keywords

References

  1. Debasish, D.; Vivekanand, G.; Nishith, V. Carbon 2004, 42, 6409.
  2. Vivekanand, G.; Ashutosh, S.; Nishith, V. Chemical Engineering and Processing 2006, 45, 1. https://doi.org/10.1016/j.cep.2005.04.006
  3. Brasquet, C.; Cloirec, P. Le Carbon 1997, 35, 1307. https://doi.org/10.1016/S0008-6223(97)00079-1
  4. Sadamura, H.; Kobayashi, S.; Honda, S.; Suzuki, N. et al. Electrochemistry 2000, 68(5), 321.
  5. Dimotakis, E.; Cal, M. P.; Economy, J.; Rood, M. J.; Larson, S. M. Environ Science Technology 1995, 29, 1876. https://doi.org/10.1021/es00007a027
  6. Cal, M. P.; Rood, M. J.; Larson, S. M. Energy and Fuels 1997, 11(2), 311. https://doi.org/10.1021/ef960200p
  7. Shimazaki, K.; Ogawa, H. Nippon Kagaku Kaishi 1992, 7, 745.
  8. Huang, Z. H.; Kang, F. Y.; Liang, K. M. Proceedings of 1st World Conference on Carbon; Berlin: German Carbon Group, 2000, 143.
  9. Tang, M. M.; Bacon, R. Carbon 1964, 2(1), 211. https://doi.org/10.1016/0008-6223(64)90035-1
  10. Arons, G. N.; Macnair, R. N. Textile Research Journal 1972, 42(1), 60. https://doi.org/10.1177/004051757204200110
  11. Arons, G. N.; Macnair, R. N. Textile Research Journal 1975, 45(1), 91. https://doi.org/10.1177/004051757504500122
  12. Daguerrea, E.; Stoeckli, G. Carbon 2001, 39, 1279. https://doi.org/10.1016/S0008-6223(00)00251-7
  13. Yulia, V.; Basova, V.; Edie, D. D.; Lee, Y.; Laura, K.; Ryu, S. K. Carbon 2004, 42, 485. https://doi.org/10.1016/j.carbon.2003.12.070
  14. Rodryguez-Reinoso, F.; Pastor, A. C.; Marsh, H.; Martýnez, M. A. Carbon 2000, 38, 379. https://doi.org/10.1016/S0008-6223(99)00118-9
  15. Rosas, J. M.; Bedia, J.; Rodriguez-Mirasol, J.; Cordero, T. Fuel 2009, 88, 19. https://doi.org/10.1016/j.fuel.2008.08.004
  16. Valente, J. M. et al. J. Porous Mat. 2007, 14, 181. DOI 10.1007/s10934-006-9023-0.
  17. Vicente, J.; Paula, S.; Luis jose, V.; Romero, A. Materials Chemistry and Physics 2010, 124(1), 223. https://doi.org/10.1016/j.matchemphys.2010.06.023
  18. Young, C. B.; Wang, K. et al. Korean Chemical Engineering Research 2005, 43, 146.
  19. Gergova, K.; Galushko, A.; Petrov & Minkova, N. Carbon 1992, 30(5), 721. https://doi.org/10.1016/0008-6223(92)90154-O
  20. Rosas, J. M.; Bedia, J.; Rodriguez-Mirasol, J.; Cordero, T. Fuel 2009, 88, 19. https://doi.org/10.1016/j.fuel.2008.08.004
  21. Eduardo, M.; Correa, C.; Angeles, M.; Angel, L. Microporous and Mesoporous Materials 2008, 111, 523. https://doi.org/10.1016/j.micromeso.2007.08.025
  22. Su, C.-I.; Wang, C.-L. Fibers and Polymers 2007, 8(5), 477. https://doi.org/10.1007/BF02875868
  23. Kyotoni, T. Control of Pore Structure of Carbon; Carbon 2000, 38, 269.

Cited by

  1. Comparative studies of porous carbon nanofibers by various activation methods vol.14, pp.3, 2013, https://doi.org/10.5714/CL.2013.14.3.180
  2. SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1011
  3. Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths vol.23, pp.2, 2016, https://doi.org/10.1007/s10570-016-0886-1
  4. High selectivity and removal efficiency of lotus root-based activated carbon towards Fe(III) in La(III) solution vol.35, pp.3, 2018, https://doi.org/10.1007/s11814-017-0322-8
  5. Selective adsorption and removal ability of pine needle-based activated carbon towards Al(III) from La(III) pp.1532-2351, 2019, https://doi.org/10.1080/01932691.2018.1464933
  6. Adsorption of methylene blue from aqueous solution onto viscose-based activated carbon fiber felts: Kinetics and equilibrium studies pp.2048-4038, 2019, https://doi.org/10.1177/0263617419827437
  7. Electrospun melamine‐blended activated carbon nanofibers for enhanced control of indoor CO2 vol.136, pp.28, 2013, https://doi.org/10.1002/app.47747
  8. Lignocellulose-based adsorbents: A spotlight review of the effective parameters on carbon dioxide capture process vol.246, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2019.125756