References
- Debasish, D.; Vivekanand, G.; Nishith, V. Carbon 2004, 42, 6409.
- Vivekanand, G.; Ashutosh, S.; Nishith, V. Chemical Engineering and Processing 2006, 45, 1. https://doi.org/10.1016/j.cep.2005.04.006
- Brasquet, C.; Cloirec, P. Le Carbon 1997, 35, 1307. https://doi.org/10.1016/S0008-6223(97)00079-1
- Sadamura, H.; Kobayashi, S.; Honda, S.; Suzuki, N. et al. Electrochemistry 2000, 68(5), 321.
- Dimotakis, E.; Cal, M. P.; Economy, J.; Rood, M. J.; Larson, S. M. Environ Science Technology 1995, 29, 1876. https://doi.org/10.1021/es00007a027
- Cal, M. P.; Rood, M. J.; Larson, S. M. Energy and Fuels 1997, 11(2), 311. https://doi.org/10.1021/ef960200p
- Shimazaki, K.; Ogawa, H. Nippon Kagaku Kaishi 1992, 7, 745.
- Huang, Z. H.; Kang, F. Y.; Liang, K. M. Proceedings of 1st World Conference on Carbon; Berlin: German Carbon Group, 2000, 143.
- Tang, M. M.; Bacon, R. Carbon 1964, 2(1), 211. https://doi.org/10.1016/0008-6223(64)90035-1
- Arons, G. N.; Macnair, R. N. Textile Research Journal 1972, 42(1), 60. https://doi.org/10.1177/004051757204200110
- Arons, G. N.; Macnair, R. N. Textile Research Journal 1975, 45(1), 91. https://doi.org/10.1177/004051757504500122
- Daguerrea, E.; Stoeckli, G. Carbon 2001, 39, 1279. https://doi.org/10.1016/S0008-6223(00)00251-7
- Yulia, V.; Basova, V.; Edie, D. D.; Lee, Y.; Laura, K.; Ryu, S. K. Carbon 2004, 42, 485. https://doi.org/10.1016/j.carbon.2003.12.070
- Rodryguez-Reinoso, F.; Pastor, A. C.; Marsh, H.; Martýnez, M. A. Carbon 2000, 38, 379. https://doi.org/10.1016/S0008-6223(99)00118-9
- Rosas, J. M.; Bedia, J.; Rodriguez-Mirasol, J.; Cordero, T. Fuel 2009, 88, 19. https://doi.org/10.1016/j.fuel.2008.08.004
- Valente, J. M. et al. J. Porous Mat. 2007, 14, 181. DOI 10.1007/s10934-006-9023-0.
- Vicente, J.; Paula, S.; Luis jose, V.; Romero, A. Materials Chemistry and Physics 2010, 124(1), 223. https://doi.org/10.1016/j.matchemphys.2010.06.023
- Young, C. B.; Wang, K. et al. Korean Chemical Engineering Research 2005, 43, 146.
- Gergova, K.; Galushko, A.; Petrov & Minkova, N. Carbon 1992, 30(5), 721. https://doi.org/10.1016/0008-6223(92)90154-O
- Rosas, J. M.; Bedia, J.; Rodriguez-Mirasol, J.; Cordero, T. Fuel 2009, 88, 19. https://doi.org/10.1016/j.fuel.2008.08.004
- Eduardo, M.; Correa, C.; Angeles, M.; Angel, L. Microporous and Mesoporous Materials 2008, 111, 523. https://doi.org/10.1016/j.micromeso.2007.08.025
- Su, C.-I.; Wang, C.-L. Fibers and Polymers 2007, 8(5), 477. https://doi.org/10.1007/BF02875868
- Kyotoni, T. Control of Pore Structure of Carbon; Carbon 2000, 38, 269.
Cited by
- Comparative studies of porous carbon nanofibers by various activation methods vol.14, pp.3, 2013, https://doi.org/10.5714/CL.2013.14.3.180
- SO2 Adsorption Characteristics by Cellulose-Based Lyocell Activated Carbon Fiber on Cu Additive Effects vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1011
- Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths vol.23, pp.2, 2016, https://doi.org/10.1007/s10570-016-0886-1
- High selectivity and removal efficiency of lotus root-based activated carbon towards Fe(III) in La(III) solution vol.35, pp.3, 2018, https://doi.org/10.1007/s11814-017-0322-8
- Selective adsorption and removal ability of pine needle-based activated carbon towards Al(III) from La(III) pp.1532-2351, 2019, https://doi.org/10.1080/01932691.2018.1464933
- Adsorption of methylene blue from aqueous solution onto viscose-based activated carbon fiber felts: Kinetics and equilibrium studies pp.2048-4038, 2019, https://doi.org/10.1177/0263617419827437
- Electrospun melamine‐blended activated carbon nanofibers for enhanced control of indoor CO2 vol.136, pp.28, 2013, https://doi.org/10.1002/app.47747
- Lignocellulose-based adsorbents: A spotlight review of the effective parameters on carbon dioxide capture process vol.246, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2019.125756