DOI QR코드

DOI QR Code

일반교량의 내진성능 확보를 위한 기본설계

Basic Design for Earthquake Resistance of Typical Bridges

  • 국승규 (부경대학교 건설공학부)
  • Kook, Seung-Kyu (Department of Civil Engineering, Pukyong National University)
  • 투고 : 2012.09.20
  • 심사 : 2012.10.17
  • 발행 : 2013.02.28

초록

일반교량은 상부구조, 연결부분, 하부구조 및 기초로 구성되어 있고 내진성능은 하부구조와 연결부분의 파괴메카니즘에 의해 결정된다. 그러므로 내진설계는 구조부재의 설계강도, 즉 설계단면을 결정하는 기본설계단계에서 수행되어야 한다. 도로교설계기준 내진설계편은 두 가지 기본설계 방식을 제시하고 있다. 첫째는 기존 설계방식으로 내진설계편이 제시한 응답수정계수를 적용하는 방식이고 둘째는 새로 도입된 연성도 내진설계 방식으로 설계자가 응답수정계수를 결정하는 방식이다. 이 연구에서는 일반교량을 대상으로 두 설계방식을 같이 적용하는 기본설계를 수행하고 내진성능 확보의 관점에서 요구되는 보완사항을 제시하였다.

Structural elements of typical bridges are superstructure, connections, substuctures and foundations and earthquake resistance is decided with the failure mechanism formed by substuctures and connections. Therefore earthquake resistant design should be carried out in the basic design step where design strengths, e.g. design sections for structural elements are determined. The Earthquake Resistant Design Part of Korean Roadway Bridge Design Code provides two basic design procedures. The first conventional procedure applies the Code-provided response modification factors. The second new procedure is the ductility-based earthquake resistant design, where designer can determine the response modification factors. In this study, basic designs including the two design processes are carried out for a typical bridge and supplements are identified in view of providing earthquake resistance.

키워드

참고문헌

  1. AASHTO (2004) AASHTO LRFD Bridge Design Specifications, SI Units Third Edition.
  2. Chung, Y.S., Song, H.J., Lee, D.H. (2003) Safety Evaluation and Retrofit of Flexure-Shear RC Bridge Piers with Lap Spliced Longitudinal Steels, Journal of the Korean Society of Civil Engineers, 23(6-A), pp.1155-1163.
  3. Kim, T.H., Park, H.Y., Kim, B.S., Shin, H.M. (2003) Seismic Performance Evaluation of Reinforced Concrete Bridge Piers with Lap Splices, Journal of the Earthquake Engineering Society of Korea, 7(3), pp.31-38. https://doi.org/10.5000/EESK.2003.7.3.031
  4. Kook, S.K. (2009) Seismic Design of Bridges in Moderate Seismic Region and Response Modification Factors, Journal of the Computational Structural Engineering Institute of Korea, 22(1), pp.65-72.
  5. Kook, S.K., Kim, P.B. (2002) Development of Earthquake Resistant Analysis Models for Typical Roadway Bridges, Journal of the Earthquake Engineering Society of Korea, 6(4), pp.1-6. https://doi.org/10.5000/EESK.2002.6.4.001
  6. Lee, J.H., Ko, S.H., Choi, J.H. (2005) Re-evaluated Overstrength Factor for Capacity Design of Reinforced Concrete Bridge Column, Earthquake Engineering Research Center, 2004 Annual Report.
  7. Lee, J.H., Son, H.S., Ko, S.H., Choi, J.H. (2002) Ductility Demand based Seismic Design for RC Bridge Columns, 2002 Proceeding of the EESK Workshop, pp.316-321.
  8. Lee, S.J. (1999) RC Ghost - PM Diagram.
  9. Midas IT (2004) Midas/Civil User Manual, Ver. 6.3.0 (Release no. 1), Midas IT Co. Ltd..
  10. Ministry of Land, Transport & Maritime Affairs (2010) Roadway Bridge Design Code, Ch.6: Earthquake Resistant Design pp.6-1-6-41, Appendix I1-I8.
  11. Park, C.K., Lee, D.H., Lee, B.K., Chung, Y.S. (2005) Aseismatic Performance Analysis of Circular RC Bridge Piers II. Suggestion for Transverse Steel Ratio, Journal of the Korea Concrete Institute, 17(5), pp.775-784. https://doi.org/10.4334/JKCI.2005.17.5.775
  12. Sun, C.H., Kim, I.H. (2009) Seismic Characteristics of Hollow Rectangular Sectional Piers with Reduced Lateral Reinforcements, Journal of the Earthquake Engineering Society of Korea, 13(3), pp.51-65. https://doi.org/10.5000/EESK.2009.13.3.051