References
- Diab T, Pritchard EM, Uhrig BA, Boerckel JD, Kaplan DL, Guldberg RE (2012) A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater 11, 123-131. https://doi.org/10.1016/j.jmbbm.2011.11.007
- Gomez P, Gil ES, Lovett ML, Rockwood DN, Vizio DD, Kaplan DL, Adam RM, Estrada CR, Mauney JR (2011) The effect of manipulation of silk scaffold fabrication parameters on matrix performance in a murine model of bladder augmentation. Biomaterials 32, 7562-7570. https://doi.org/10.1016/j.biomaterials.2011.06.067
- Huang W, Begum R, Barber T, Ibba V, Tee NCH, Hussain M, Arastoo M, Yang Q, Robson LG, Lesage S, Cheysens T, Skaer NJV, Knight DP, Priestley JV (2012) Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials 33, 59-71. https://doi.org/10.1016/j.biomaterials.2011.09.030
- Jo YY, Kweon HY, Lee KG, Lee HS (2012) A study of changes on the physical properties of silk fibroin biological membrane according to the dissolving conditions. J Seric Entomol Sci 50, 71-75.
- Kim J, Kim CH, Park CH, Seo JN, Kweon HY, Kang SW, Lee KG (2010) Comparison of methods for the repair of acute tympanic membrane perforations: Silk patch vs. pater patch. Wound Repair and Regeneration 18, 132-138. https://doi.org/10.1111/j.1524-475X.2009.00565.x
- Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, Kim TI, Park YJ, Seol YJ, Lee YM, Ku Y, Rhyu IC, Han SB, Chung CP (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. Journal of Biotechnology 120, 327-339. https://doi.org/10.1016/j.jbiotec.2005.06.033
- Kim KH, Kim MH, Lim YH, Park SR, Choi BY, Park HC, Yoon SH, Min BH, Park HS (2009) A comparative biocompatibility study of chondrocyte-drived ECM and silk fibroin scaffolds in vitro and in rat acute traumatic brain injury. Tissue Engineering and Regenerative Medicine 6, 1420-1428.
- Kim UJ, Park J, Kim HJ, Wada M, and Kaplan DL (2005) Three-demensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26, 2775-2785. https://doi.org/10.1016/j.biomaterials.2004.07.044
- Lv Q, Cao C, Zhang Y, Man X, Zhu H (2004) The preparation of insoluble fibroin films induced by degummed fibroin or fibroin microspheres. J Mater Sci Mater Med 15, 1193-1197. https://doi.org/10.1007/s10856-004-5918-y
- Mandal BB, Park SH, Gil ES, Kaplan DL (2011) Multilayered silk scaffold for meniscus tissue engineering. Biomaterials 32, 639-651. https://doi.org/10.1016/j.biomaterials.2010.08.115
- Masahiro K, Naohide T, Yasuhiro S, Koji Y, Yasushi T, Naoyoshi K, Toru S (2011) Chondrocyte distribution and cartilage regeneration in silk fibroin sponge. Bio-Medical Materials and Engineering 21, 53-61.
- Meinel L, Fajardo R, Hofmann S, Langer R, Chen J, Snyder B, Novakovic GV, Kaplan D (2005) Silk implants for the healing ofcritical size bone defects. Bone 37, 688-698. https://doi.org/10.1016/j.bone.2005.06.010
- Patra C, Talukdar S, Novoyatleva T, Velagala SR, Muhlfeld C, Kundu B, Kundu SC, Engel FB (2012) Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33, 2673-2680. https://doi.org/10.1016/j.biomaterials.2011.12.036
- Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54, 139-148. https://doi.org/10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7
- Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schafer F, Allmeling C, Kasper C, Vogt PM (2011) Artificial skin-culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLOS ONE 6, 1-10.