DOI QR코드

DOI QR Code

Nanoparticle-Based Vaccine Delivery for Cancer Immunotherapy

  • Park, Yeong-Min (Department of Immunology, School of Medicine, Konkuk University) ;
  • Lee, Seung Jun (Department of Immunology, School of Medicine, Konkuk University) ;
  • Kim, Young Seob (Department of Immunology, School of Medicine, Konkuk University) ;
  • Lee, Moon Hee (Department of Immunology, School of Medicine, Konkuk University) ;
  • Cha, Gil Sun (Department of Immunology, School of Medicine, Konkuk University) ;
  • Jung, In Duk (Department of Immunology, School of Medicine, Konkuk University) ;
  • Kang, Tae Heung (Department of Immunology, School of Medicine, Konkuk University) ;
  • Han, Hee Dong (Department of Immunology, School of Medicine, Konkuk University)
  • 투고 : 2013.08.29
  • 심사 : 2013.09.13
  • 발행 : 2013.10.31

초록

Development of nano-sized carriers including nanoparticles, nanoemulsions or liposomes holds great potential for advanced delivery systems for cancer immunotherapy, as such nanostructures can be used to more effectively manipulate or deliver immunologically active components to specific target sites. Successful development of nanotechnology based platform in the field of immunotherapy will allow the application of vaccines, adjuvants and immunomodulatory drugs that improve clinical outcomes for immunological diseases. Here, we review current nanoparticle-based platforms in the efficacious delivery of vaccines in cancer immunotherapy.

키워드

참고문헌

  1. Craparo, E. F. and M. L. Bondi. 2012. Application of polymeric nanoparticles in immunotherapy. Curr. Opin. Allergy Clin. Immunol. 12: 658-664. https://doi.org/10.1097/ACI.0b013e3283588c57
  2. Smith, D. M., J. K. Simon, and J. R. Baker, Jr. 2013. Applications of nanotechnology for immunology. Nat. Rev. Immunol. 13: 592-605. https://doi.org/10.1038/nri3488
  3. Serda, R. E. 2013. Particle platforms for cancer immunotherapy. Int. J. Nanomedicine 8: 1683-1696.
  4. Rodriguez-Limas, W. A., K. Sekar, and K. E. Tyo. 2013. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr. Opin. Biotechnol. In press: http://dx.doi.org/10.1016/j.copbio. 2013.02.008.
  5. Yuba, E., A. Harada, Y. Sakanishi, S. Watarai, and K. Kono. 2013. A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials 34: 3042-3052. https://doi.org/10.1016/j.biomaterials.2012.12.031
  6. Syed, S., A. Zubair, and M. Frieri. 2013. Immune response to nanomaterials: implications for medicine and literature review. Curr. Allergy. Asthma Rep. 13: 50-57. https://doi.org/10.1007/s11882-012-0302-3
  7. Ditto, A. J., P. N. Shah, and Y. H. Yun. 2009. Non-viral gene delivery using nanoparticles. Expert. Opin. Drug Deliv. 6: 1149-1160. https://doi.org/10.1517/17425240903241796
  8. Hua, S. and P. J. Cabot. 2013. Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain condition. Pain Physician 16: E199-216.
  9. Gregory, A. E., R. Titball, and D. Williamson. 2013. Vaccine delivery using nanoparticles. Front Cell Infect. Microbiol. 3:1-13. doi: 10.3389/fcimb.2013.00013
  10. Hadinoto, K., A. Sundaresan, and W. S. Cheow. 2013. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm. In press : http://dx.doi.org/10.1016/j.ejpb.2013.07.
  11. Pawar, D., S. Mangal, R. Goswami, and K. S. Jaganathan. 2013. Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: Effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur. J. Pharm. Biopharm. In press : http://dx.doi. org/10.1016/j.ejpb.2013.06.017
  12. DeMuth, P. C., J. J. Moon, H. Suh, P. T. Hammond, and D. J. Irvine. 2012. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 6: 8041-8051. https://doi.org/10.1021/nn302639r
  13. Lee, J. S., D. H. Kim, C. M. Lee, T. K. Ha, K. T. Noh, J. W. Park, D. R. Heo, K. H. Son, I. D. Jung, E. K. Lee, Y. K. Shin, S. C. Ahn, and Y. M. Park. 2011. Deoxypodophyllotoxin induces a Th1 response and enhances the antitumor efficacy of a dendritic cell-based vaccine. Immune Netw. 11: 79-94. https://doi.org/10.4110/in.2011.11.1.79
  14. Noh, K. T., S. J. Shin, K. H. Son, I. D. Jung, H. K. Kang, S. J. Lee, E. K. Lee, Y. K. Shin, J. C. You, and Y. M. Park. 2012. The Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein, a toll-like receptor 4 agonist, enhances dendritic cell-based cancer vaccine potency. Exp. Mol. Med. 44: 340-349. https://doi.org/10.3858/emm.2012.44.5.038
  15. Cho, N. H., T. C. Cheong, J. H. Min, J. H. Wu, S. J. Lee, D. Kim, J. S. Yang, S. Kim, Y. K. Kim, and S. Y. Seong. 2011. A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy. Nat. Nanotechnol. 6: 675-682. https://doi.org/10.1038/nnano.2011.149
  16. Noh, Y. W., J. H. Hong, S. M. Shim, H. S. Park, H. H. Bae, E. K. Ryu, J. H. Hwang, C. H. Lee, S. H. Cho, M. H. Sung, H. Poo, and Y. T. Lim. 2013. Polymer nanomicelles for efficient mucus delivery and antigen-specific high mucosal immunity. Angew. Chem. Int. Ed. Engl. 52: 7684-7689. https://doi.org/10.1002/anie.201302881
  17. Prasad, S., V. Cody, J. K. Saucier-Sawyer, W. M. Saltzman, C. T. Sasaki, R. L. Edelson, M. A. Birchall, and D. J. Hanlon. 2011. Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine 7: 1-10. https://doi.org/10.1016/j.nano.2010.07.002
  18. Silva, J. M., M. Videira, R. Gaspar, V. Preat, and H. F. Florindo. 2013. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J. Control. Release 168: 179-199. https://doi.org/10.1016/j.jconrel.2013.03.010
  19. Xiang, S. D., K. Wilson, S. Day, M. Fuchsberger, and M. Plebanski. 2013. Methods of effective conjugation of antigens to nanoparticles as non-inflammatory vaccine carriers. Methods 60: 232-241. https://doi.org/10.1016/j.ymeth.2013.03.036
  20. Nembrini, C., A. Stano, K. Y. Dane, M. Ballester, A. J. van der Vlies, B. J. Marsland, M. A. Swartz, and J. A. Hubbell. 2011. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc. Natl. Acad. Sci. USA 108: E989-997. https://doi.org/10.1073/pnas.1104264108
  21. Andrade, F., D. Rafael, M. Videira, D. Ferreira, A. Sosnik, and B. Sarmento. 2013. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv. Drug Deliv. Rev. In press : http://dx.doi.org/10.1016/j.addr. 2013.07.020
  22. Suh, W. H., K. S. Suslick, G. D. Stucky, and Y. H. Suh. 2009. Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87: 133-170. https://doi.org/10.1016/j.pneurobio.2008.09.009
  23. Zhang, L., F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad. 2008. Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83: 761-769. https://doi.org/10.1038/sj.clpt.6100400
  24. Kotagiri, N., J. S. Lee, and J. W. Kim. 2013. Selective pathogen targeting and macrophage evading carbon nanotubes through dextran sulfate coating and PEGylation for photothermal theranostics. J. Biomed. Nanotechnol. 9: 1008-1016. https://doi.org/10.1166/jbn.2013.1531
  25. Kanekiyo, M., C. J. Wei, H. M. Yassine, P. M. McTamney, J. C. Boyington, J. R. Whittle, S. S. Rao, W. P. Kong, L. Wang, and G. J. Nabel. 2013. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499: 102-106. https://doi.org/10.1038/nature12202
  26. Perry, J. L., K. G. Reuter, M. P. Kai, K. P. Herlihy, S. W. Jones, J. C. Luft, M. Napier, J. E. Bear, and J. M. DeSimone. 2012. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12: 5304-5310. https://doi.org/10.1021/nl302638g
  27. Kim, J. H., Y. W. Noh, M. B. Heo, M. Y. Cho, and Y. T. Lim. 2012. Multifunctional hybrid nanoconjugates for efficient in vivo delivery of immunomodulating oligonucleotides and enhanced antitumor immunity. Angew. Chem. Int. Ed. Engl. 51: 9670-9673. https://doi.org/10.1002/anie.201204989
  28. Demento, S. L., S. C. Eisenbarth, H. G. Foellmer, C. Platt, M. J. Caplan, W. Mark Saltzman, I. Mellman, M. Ledizet, E. Fikrig, R. A. Flavell, and T. M. Fahmy. 2009. Inflammasomeactivating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine 27: 3013-3021. https://doi.org/10.1016/j.vaccine.2009.03.034
  29. Diwan, M., M. Tafaghodi, and J. Samuel. 2002. Enhancement of immune responses by co-delivery of a CpG oligodeoxynucleotide and tetanus toxoid in biodegradable nanospheres. J. Control. Release 85: 247-262. https://doi.org/10.1016/S0168-3659(02)00275-4
  30. Clawson, C., C. T. Huang, D. Futalan, D. M. Seible, R. Saenz, M. Larsson, W. Ma, B. Minev, F. Zhang, M. Ozkan, C. Ozkan, S. Esener, and D. Messmer. 2010. Delivery of a peptide via poly(D,L-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell-stimulatory capacity. Nanomedicine 6: 651-661. https://doi.org/10.1016/j.nano.2010.03.001
  31. Shen, H., A. L. Ackerman, V. Cody, A. Giodini, E. R. Hinson, P. Cresswell, R. L. Edelson, W. M. Saltzman, and D. J. Hanlon. 2006. Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsu lated in biodegradable nanoparticles. Immunology 117: 78-88. https://doi.org/10.1111/j.1365-2567.2005.02268.x
  32. Liu, S. Y., W. Wei, H. Yue, D. Z. Ni, Z. G. Yue, S. Wang, Q. Fu, Y. Q. Wang, G. H. Ma, and Z. G. Su. 2013. Nanoparticles-based multi-adjuvant whole cell tumor vaccine for cancer immunotherapy. Biomaterials 34: 8291-8300. https://doi.org/10.1016/j.biomaterials.2013.07.020
  33. Shima, F., T. Akagi, T. Uto, and M. Akashi, 2013. Manipulating the antigen-specific immune response by the hydrophobicity of amphiphilic poly(gamma-glutamic acid) nanoparticles. Biomaterials 34: 9709-9716. https://doi.org/10.1016/j.biomaterials.2013.08.064
  34. Reddy, S. T., A. J. van der Vlies, E. Simeoni, V. Angeli, G. J. Randolph, C. P. O'Neil, L. K. Lee, M. A. Swartz, and J. A. Hubbell. 2007. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25: 1159-1164. https://doi.org/10.1038/nbt1332
  35. Bachmann, M. F. and G. T. Jennings. 2010. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10: 787-796. https://doi.org/10.1038/nri2868
  36. Foged, C., B. Brodin, S. Frokjaer, and A. Sundblad. 2005. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int. J. Pharm. 298: 315-322. https://doi.org/10.1016/j.ijpharm.2005.03.035
  37. Mottram, P. L., D. Leong, B. Crimeen-Irwin, S. Gloster, S. D. Xiang, J. Meanger, R. Ghildyal, N. Vardaxis, and M. Plebanski. 2007. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm. 4: 73-84. https://doi.org/10.1021/mp060096p
  38. Thurn, K. T., E. Brown, A. Wu, S. Vogt, B. Lai, J. Maser, T. Paunesku, and G. E. Woloschak. 2007. Nanoparticles for applications in cellular imaging. Nanoscale Res. Lett. 2: 430-441. https://doi.org/10.1007/s11671-007-9081-5
  39. Yan, W., W. Chen, and L. Huang. 2008. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J. Control. Release 130: 22-28. https://doi.org/10.1016/j.jconrel.2008.05.005
  40. Venkataraman, S., J. L. Hedrick, Z. Y. Ong, C. Yang, P. L. Ee, P. T. Hammond, and Y. Y. Yang. 2011. The effects of polymeric nanostructure shape on drug delivery. Adv. Drug Deliv. Rev. 63: 1228-1246. https://doi.org/10.1016/j.addr.2011.06.016
  41. Florez, L., C. Herrmann, J. M. Cramer, C. P. Hauser, K. Koynov, K. Landfester, D. Crespy, and V. Mailander. 2012. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small 8: 2222-2230. https://doi.org/10.1002/smll.201102002
  42. Alexis, F., E. Pridgen, L. K. Molnar, and O. C. Farokhzad. 2008. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5: 505-515. https://doi.org/10.1021/mp800051m
  43. Kelly, C., C. Jefferies, and S. A. Cryan. 2011. Targeted liposomal drug delivery to monocytes and macrophages. J. Drug Deliv. 2011: 727241.
  44. Nguyen, D. N., K. P. Mahon, G. Chikh, P. Kim, H. Chung, A. P. Vicari, K. T. Love, M. Goldberg, S. Chen, A. M. Krieg, J. Chen, R. Langer, and D. G. Anderson. 2012. Lipid-derived nanoparticles for immunostimulatory RNA adjuvant delivery. Proc. Natl. Acad. Sci. USA 109: E797-803. https://doi.org/10.1073/pnas.1121423109
  45. Geissmann, F., S. Jung, and D. R. Littman. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19: 71-82. https://doi.org/10.1016/S1074-7613(03)00174-2
  46. Lee, I. H., H. K. Kwon, S. An, D. Kim, S. Kim, M. K. Yu, J. H. Lee, T. S. Lee, S. H. Im, and S. Jon. 2012. Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. Int. Ed. Engl. 51: 8800-8805. https://doi.org/10.1002/anie.201203193

피인용 문헌

  1. Development of a Novel Nanoparticle-based Therapeutic Vaccine for Breast Cancer Immunotherapy vol.8, pp.None, 2013, https://doi.org/10.1016/j.provac.2014.07.011
  2. Revolutionary impact of nanovaccines on immunotherapy vol.2, pp.2, 2013, https://doi.org/10.1016/j.nhtm.2014.11.058
  3. Stem cell technology and engineering for cancer treatment vol.2, pp.6, 2013, https://doi.org/10.7603/s40730-015-0013-1
  4. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics vol.12, pp.7, 2015, https://doi.org/10.1517/17425247.2015.1042857
  5. Gold nanoparticles and vaccine development vol.14, pp.9, 2013, https://doi.org/10.1586/14760584.2015.1064772
  6. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research vol.37, pp.11, 2013, https://doi.org/10.1007/s10529-015-1901-6
  7. The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases vol.36, pp.5, 2016, https://doi.org/10.3109/07388551.2015.1036002
  8. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction vol.11, pp.6, 2016, https://doi.org/10.2217/nnm.16.5
  9. Current in vitro approaches to assess nanoparticle interactions with lung cells vol.11, pp.18, 2013, https://doi.org/10.2217/nnm-2016-0199
  10. Immunological properties of gold nanoparticles vol.8, pp.3, 2013, https://doi.org/10.1039/c6sc03631g
  11. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy vol.8, pp.None, 2017, https://doi.org/10.3389/fimmu.2017.00774
  12. Enhancement of Adjuvant Functions of Natural Killer T Cells Using Nanovector Delivery Systems: Application in Anticancer Immune Therapy vol.8, pp.None, 2013, https://doi.org/10.3389/fimmu.2017.00879
  13. Application of nanostructured drug delivery systems in immunotherapy of cancer: a review vol.45, pp.1, 2013, https://doi.org/10.1080/21691401.2016.1178136
  14. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies vol.4, pp.None, 2013, https://doi.org/10.3389/fmolb.2017.00052
  15. Triple helix networks matching knowledge demand and supply in seven Dutch horticulture Greenport regions vol.119, pp.1, 2013, https://doi.org/10.7896/j.1052
  16. Cancer resistance to treatment and antiresistance tools offered by multimodal multifunctional nanoparticles vol.8, pp.1, 2017, https://doi.org/10.1186/s12645-017-0030-4
  17. High adjuvant activity of layered double hydroxide nanoparticles and nanosheets in anti-tumour vaccine formulations vol.47, pp.9, 2013, https://doi.org/10.1039/c7dt03725b
  18. pH/hypoxia programmable triggered cancer photo-chemotherapy based on a semiconducting polymer dot hybridized mesoporous silica framework vol.9, pp.37, 2013, https://doi.org/10.1039/c8sc02408a
  19. A Novel Human Papillomavirus 16 L1 Pentamer-Loaded Hybrid Particles Vaccine System: Influence of Size on Immune Responses vol.10, pp.42, 2013, https://doi.org/10.1021/acsami.8b11556
  20. Enhancing Protective Efficacy of Poultry Vaccines through Targeted Delivery of Antigens to Antigen-Presenting Cells vol.6, pp.4, 2013, https://doi.org/10.3390/vaccines6040075
  21. Functional Nanomaterials Optimized to Circumvent Tumor Immunological Tolerance vol.29, pp.3, 2019, https://doi.org/10.1002/adfm.201806087
  22. Physicochemical properties of particulate vaccine adjuvants: their pivotal role in modulating immune responses vol.49, pp.3, 2013, https://doi.org/10.1007/s40005-018-0406-4
  23. Nanoparticles: Properties and Applications in Cancer Immunotherapy vol.25, pp.17, 2013, https://doi.org/10.2174/1381612825666190708214240
  24. Mannose functionalized plain and endosomolytic nanocomposite(s)-based approach for the induction of effective antitumor immune response in C57BL/6 mice melanoma model vol.45, pp.7, 2013, https://doi.org/10.1080/03639045.2019.1593442
  25. Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited] vol.10, pp.7, 2013, https://doi.org/10.1364/boe.10.003152
  26. Microfluidics-Assisted Size Tuning and Biological Evaluation of PLGA Particles vol.11, pp.11, 2013, https://doi.org/10.3390/pharmaceutics11110590
  27. Modulation of Nanostructure-Based Lipopolysaccharide Active Immunotherapy in Cancer: Size and Composition Determine Short- and Long-Term Tolerability vol.16, pp.11, 2013, https://doi.org/10.1021/acs.molpharmaceut.9b00631
  28. A nano-based thermotherapy for cancer stem cell-targeted therapy vol.8, pp.18, 2013, https://doi.org/10.1039/d0tb00311e
  29. Nanotechnology for COVID-19: Therapeutics and Vaccine Research vol.14, pp.7, 2013, https://doi.org/10.1021/acsnano.0c04006
  30. Silk Fibroin Nanoadjuvant as a Promising Vaccine Carrier to Deliver the FimH-IutA Antigen for Urinary Tract Infection vol.6, pp.8, 2013, https://doi.org/10.1021/acsbiomaterials.0c00736
  31. Nanotechnological strategies for systemic microbial infections treatment: A review vol.589, pp.None, 2013, https://doi.org/10.1016/j.ijpharm.2020.119780
  32. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges vol.19, pp.11, 2013, https://doi.org/10.1080/14760584.2020.1858058
  33. An Antigen‐Delivery Protein Nanoparticle Combined with Anti‐PD‐1 Checkpoint Inhibitor Has Curative Efficacy in an Aggressive Melanoma Model vol.3, pp.12, 2020, https://doi.org/10.1002/adtp.202000122
  34. Doxorubicin-Loaded PLGA Nanoparticles for Cancer Therapy: Molecular Weight Effect of PLGA in Doxorubicin Release for Controlling Immunogenic Cell Death vol.12, pp.12, 2013, https://doi.org/10.3390/pharmaceutics12121165
  35. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System vol.16, pp.None, 2021, https://doi.org/10.2147/ijn.s295300
  36. The Use of Nanobiotechnology in Immunology and Vaccination vol.9, pp.2, 2021, https://doi.org/10.3390/vaccines9020074
  37. The Potential of Calcium Phosphate Nanoparticles as Adjuvants and Vaccine Delivery Vehicles vol.8, pp.None, 2013, https://doi.org/10.3389/fmats.2021.788373
  38. Nanoparticles in cancer immunotherapies: An innovative strategy vol.37, pp.2, 2013, https://doi.org/10.1002/btpr.3070
  39. Enhancing the specific T cell immune response against micro- and nanoparticle immobilized antigen vol.11, pp.4, 2013, https://doi.org/10.15789/2220-7619-ets-1374
  40. Delivery of a Cancer-Testis Antigen-Derived Peptide Using Conformationally Restricted Dipeptide-Based Self-Assembled Nanotubes vol.18, pp.10, 2013, https://doi.org/10.1021/acs.molpharmaceut.1c00451
  41. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines vol.14, pp.11, 2013, https://doi.org/10.3390/ph14111173