DOI QR코드

DOI QR Code

Autophagy as an Innate Immune Modulator

  • Oh, Ji Eun (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Heung Kyu (Laboratory of Host Defenses, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2012.11.30
  • Accepted : 2012.12.26
  • Published : 2013.02.28

Abstract

Autophagy is a fundamental cellular process in eukaryotic cells for maintaining homeostasis by degrading cellular proteins and organelles. Recently, the roles of autophagy have been expanded to immune systems, which in turn modulate innate immune responses. More specifically, autophagy acts as a direct effector for protection against pathogens, as well as a modulator of pathogen recognition and downstream signaling in innate immune responses. In addition, autophagy controls autoimmunity and inflammatory disorders by negative regulation of immune signaling. In this review, we focus on recent advances in the role of autophagy in innate immune systems.

Keywords

References

  1. Klionsky, D. J. and S. D. Emr. 2000. Autophagy as a regulated pathway of cellular degradation. Science 290: 1717- 1721. https://doi.org/10.1126/science.290.5497.1717
  2. Mizushimam, N. and D. J. Klionsky. 2007. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27: 19-40. https://doi.org/10.1146/annurev.nutr.27.061406.093749
  3. Massey, A. C., C. Zhang, and A. M. Cuervo. 2006. Chaperone- mediated autophagy in aging and disease. Curr. Top. Dev. Biol. 73: 205-235. https://doi.org/10.1016/S0070-2153(05)73007-6
  4. Cuervo, A. M. and J. H. Dice. 2000. Unique properties of lamp2a compared to other lamp2 isoforms. J. Cell Sci. 113 Pt24: 4441-4450.
  5. Cuervo, A. M. and J. F. Dice. 1996. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273: 501-503. https://doi.org/10.1126/science.273.5274.501
  6. Chiang, H. L., S. R. Terlecky, C. P. Plant, and J. F. Dice. 1989. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382-385 https://doi.org/10.1126/science.2799391
  7. Mizushima, N., Y. Ohsumi, and T. Yoshimori. 2002. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27: 421-429. https://doi.org/10.1247/csf.27.421
  8. Johansen, T. and T. Lamark. 2011. Selective autophagy mediated by autophagic adapter proteins Autophagy.7: 279-296. https://doi.org/10.4161/auto.7.3.14487
  9. Mizushima, N., T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii, M. D. George, D. J. Klionsky, M. Ohsumi, and Y. Ohsumi. 1998. A protein conjugation system essential for autophagy. Nature 395: 395-398. https://doi.org/10.1038/26506
  10. Ohsumi, Y. 2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2: 211-216. https://doi.org/10.1038/35056522
  11. Bjorkoy, G., T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, and T. Johansen. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171: 603-614. https://doi.org/10.1083/jcb.200507002
  12. Levine, B. and D. J. Klionsky. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6: 463-477. https://doi.org/10.1016/S1534-5807(04)00099-1
  13. Levine, B. and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell 132: 27-42. https://doi.org/10.1016/j.cell.2007.12.018
  14. Shintani, T. and D. J. Klionsky. 2004. Autophagy in health and disease: a double-edged sword. Science 306: 990-995. https://doi.org/10.1126/science.1099993
  15. Nakagawa, I., A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi, T. Kamimoto, A. Nara, J. Funao, M. Nakata, K. Tsuda, S. Hamada, and T. Yoshimori. 2004. Autophagy defends cells against invading group A Streptococcus. Science 306: 1037-1040. https://doi.org/10.1126/science.1103966
  16. Gutierrez, M. G., S. S. Master, S. B. Singh, G. A. Taylor, M. I. Colombo, and V. Deretic. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119: 753-766. https://doi.org/10.1016/j.cell.2004.11.038
  17. Xu, Y., C. Jagannath, X. D. Liu, A. Sharafkhaneh, K. E. Kolodziejska, and N. T. Eissa. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27: 135-144. https://doi.org/10.1016/j.immuni.2007.05.022
  18. Delgado, M. A., R. A. Elmaoued, A. S. Davis, G. Kyei, and V. Deretic. 2008. Toll-like receptors control autophagy. EMBO J. 27: 1110-1121. https://doi.org/10.1038/emboj.2008.31
  19. Sanjuan, M. A., C. P. Dillon, S. W. Tait, S. Moshiach, F. Dorsey, S. Connell, M. Komatsu, K. Tanaka, J. L. Cleveland, S. Withoff, and D. R. Green. 2007. Toll-like receptor signalling in macrophages links the autophagy pathway to phago cytosis. Nature 450: 1253-1257. https://doi.org/10.1038/nature06421
  20. Saitoh, T., N. Fujita, M. H. Jang, S. Uematsu, B. G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456: 264-268. https://doi.org/10.1038/nature07383
  21. Dengjel, J., O. Schoor, R. Fischer, M. Reich, M. Kraus, M. Muller, K. Kreymborg, F. Altenberend, J. Brandenburg, H. Kalbacher, R. Brock, C. Driessen, H. G. Rammensee, and S. Stevanovic. 2005. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. U. S. A. 102: 7922-7927. https://doi.org/10.1073/pnas.0501190102
  22. Paludan, C., D. Schmid, M. Landthaler, M. Vockerodt, D. Kube, T. Tuschl, and C. Münz. 2005. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307: 593-596. https://doi.org/10.1126/science.1104904
  23. Schmid, D., M. Pypaert, and C. Münz. 2007. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26: 79-92. https://doi.org/10.1016/j.immuni.2006.10.018
  24. Pua, H. H., I. Dzhagalov, M. Chuck, N. Mizushima, and Y. W. He. 2007. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204: 25-31. https://doi.org/10.1084/jem.20061303
  25. Pua, H. H. and Y. W. He. 2007. Maintaining T lymphocyte homeostasis: another duty of autophagy. Autophagy 3: 266-267 https://doi.org/10.4161/auto.3908
  26. Miller, B. C., Z. Zhao, L. M. Stephenson, K. Cadwell, H. H. Pua, H. K. Lee, N. N. Mizushima, A. Iwasaki, Y. W. He, W. Swat, H. W. Virgin, 4th. 2008. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4: 309-314. https://doi.org/10.4161/auto.5474
  27. Schmid, D. and C. Münz. 2007. Innate and adaptive immunity through autophagy. Immunity 27: 11-21. https://doi.org/10.1016/j.immuni.2007.07.004
  28. Yuk, J. M., D. M. Shin, H. M. Lee, C. S. Yang, H. S. Jin, K. K. Kim, Z. W. Lee, S. H. Lee, J. M. Kim, and E. K. Jo. 2009. Vitamin D3 induces autophagy in human monocytes/ macrophages via cathelicidin. Cell Host Microbe 6: 231-243. https://doi.org/10.1016/j.chom.2009.08.004
  29. Watson, R. O., P. S. Manzanillo, and J. S. Cox. 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150: 803-815. https://doi.org/10.1016/j.cell.2012.06.040
  30. Mahairas, G. G., P. J. Sabo, M. J. Hickey, D. C. Singh, and C. K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178: 1274-1282. https://doi.org/10.1128/jb.178.5.1274-1282.1996
  31. Pym, A. S., P. Brodin, L. Majlessi, R. Brosch, C. Demangel, A. Williams, K. E. Griffiths, G. Marchal, C. Leclerc, and S. T. Cole. 2003. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9: 533- https://doi.org/10.1038/nm859
  32. Smith, J., J. Manoranjan, M. Pan, A. Bohsali, J. Xu, J. Liu, K. L. McDonald, A. Szyk, N. LaRonde-LeBlanc, and L. Y. Gao. 2008. Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect. Immun. 76: 5478-5487. https://doi.org/10.1128/IAI.00614-08
  33. Rich, K. A., C. Burkett, and P. Webster. 2003. Cytoplasmic bacteria can be targets for autophagy. Cell. Microbiol. 5: 455-468. https://doi.org/10.1046/j.1462-5822.2003.00292.x
  34. Zheng, Y. T., S. Shahnazari, A. Brech, T. Lamark, T. Johansen, and J. H. Brumell. 2009. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183: 5909-5916. https://doi.org/10.4049/jimmunol.0900441
  35. Thurston, T. L., G. Ryzhakov, S. Bloor, N. von Muhlinen, and F. Randow. 2009. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10: 1215-1221. https://doi.org/10.1038/ni.1800
  36. Yuk, J. M., T. Yoshimori, and E. K. Jo. 2012. Autophagy and bacterial infectious diseases. Exp. Mol. Med. 44: 99-108. https://doi.org/10.3858/emm.2012.44.2.032
  37. Iwasaki, A. and R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987-995. https://doi.org/10.1038/ni1112
  38. Oh, J. E. and H. K. Lee. 2012. Modulation of pathogen recognition by autophagy. Front Immunol. 3: 44.
  39. Lee, M. S. and Y. J. Kim. 2007. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76: 447-480. https://doi.org/10.1146/annurev.biochem.76.060605.122847
  40. Cooney, R., J. Baker, O. Brain, B. Danis, T. Pichulik, P. Allan, D. J. Ferguson, B. J. Campbell, D. Jewell, and A. Simmons. 2010. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16: 90-97. https://doi.org/10.1038/nm.2069
  41. Travassos, L. H., L. A. Carneiro, M. Ramjeet, S. Hussey, Y. G. Kim, J. G. Magalhaes, L. Yuan, F. Soares, E. Chea, L. Le Bourhis, I. G. Boneca, A. Allaoui, N. L. Jones, G. Nunez, S. E. Girardin, and D. J. Philpott. 2010. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11: 55-62. https://doi.org/10.1038/ni.1823
  42. Cho, J. H. and C. T. Weaver. 2007. The genetics of inflammatory bowel disease. Gastroenterology 133: 1327-1339. https://doi.org/10.1053/j.gastro.2007.08.032
  43. Hampe, J., A. Franke, P. Rosenstiel, A. Till, M. Teuber, K. Huse, M. Albrecht, G. Mayr, F. M. De La Vega, J. Briggs, S. Gunther, N. J. Prescott, C. M. Onnie, R. Hasler, B. Sipos, U. R. Folsch, T. Lengauer, M. Platzer, C. G. Mathew, M. Krawczak, and S. Schreiber. 2007. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39: 207-211 https://doi.org/10.1038/ng1954
  44. Rioux, J. D., R. J. Xavier, K. D. Taylor, M. S. Silverberg, P. Goyette, A. Huett, T. Green, P. Kuballa, M. M. Barmada, L. W. Datta, Y. Y. Shugart, A. M. Griffiths, S. R. Targan, A. F. Ippoliti, E. J. Bernard, L. Mei, D. L. Nicolae, M. Regueiro, L. P. Schumm, A. H. Steinhart, J. I. Rotter, R. H. Duerr, J. H. Cho, M. J. Daly, and S. R. Brant. 2007. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39: 596-604. https://doi.org/10.1038/ng2032
  45. Liang, X. H., L. K. Kleeman, H. H. Jiang, G. Gordon, J. E. Goldman, G. Berry, B. Herman, and B. Levine. 1998. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72: 8586-8596.
  46. Orvedahl, A., S. MacPherson, R. Sumpter, Jr, Z. Tallóczy, Z. Zou, and B. Levine. 2010. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7: 115-127. https://doi.org/10.1016/j.chom.2010.01.007
  47. Orvedahl, A., D. Alexander, Z. Tallóczy, Q. Sun, Y. Wei, W. Zhang, D. Burns, D. A. Leib, and B. Levine. 2007. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1: 23-35. https://doi.org/10.1016/j.chom.2006.12.001
  48. Alexander, D. E. and D. A. Leib. 2008. Xenophagy in herpes simplex virus replication and pathogenesis. Autophagy 4: 101-103. https://doi.org/10.4161/auto.5222
  49. Barton, G. M. 2007. Viral recognition by Toll-like receptors. Semin. Immunol. 19: 33-40. https://doi.org/10.1016/j.smim.2007.01.003
  50. Lee, H. K. and A. Iwasaki. 2008. Autophagy and antiviral immunity. Curr. Opin. Immunol. 20: 23-29. https://doi.org/10.1016/j.coi.2008.01.001
  51. Tal, M. C. and A. Iwasaki. 2009. Autophagy and innate recognition systems. Curr. Top. Microbiol. Immunol. 335: 107-121
  52. Yordy, B. and A. Iwasaki. 2011. Autophagy in the control and pathogenesis of viral infection. Curr. Opin. Virol. 1: 196-203. https://doi.org/10.1016/j.coviro.2011.05.016
  53. Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, and T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5: 730-737. https://doi.org/10.1038/ni1087
  54. Yoneyama, M., M. Kikuchi, K. Matsumoto, T. Imaizumi, M. Miyagishi, K. Taira, E. Foy, Y. M. Loo, M. Gale, Jr, S. Akira, S. Yonehara, A. Kato, and T. Fujita. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175: 2851- 2858. https://doi.org/10.4049/jimmunol.175.5.2851
  55. Foy, E., K. Li, R. Sumpter, Jr, Y. M. Loo, C. L. Johnson, C. Wang, P. M. Fish, M. Yoneyama, T. Fujita, S. M. Lemon, M. Gale, Jr. 2005. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl. Acad. Sci. U. S. A. 102: 2986-2991. https://doi.org/10.1073/pnas.0408707102
  56. Jounai, N., F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki, K. Q. Xin, K. J. Ishii, T. Kawai, S. Akira, K. Suzuki, and K. Okuda. 2007. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. U. S. A. 104: 14050-14055. https://doi.org/10.1073/pnas.0704014104
  57. Tal, M. C., M. Sasai, H. K. Lee, B. Yordy, G. S. Shadel, and A. Iwasaki. 2009. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl. Acad. Sci. U. S. A. 106: 2770-2775. https://doi.org/10.1073/pnas.0807694106
  58. Schroder, K. and J. Tschopp. 2010. The inflammasomes. Cell 140: 821-832. https://doi.org/10.1016/j.cell.2010.01.040
  59. Shi, C. S., K. Shenderov, N. N. Huang, J. Kabat, M. Abu-Asab, K. A. Fitzgerald, A. Sher, and J. H. Kehrl. 2012. Activation of autophagy by inflammatory signals limits IL-1$\beta$ production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13: 255-263. https://doi.org/10.1038/ni.2215
  60. Bodemann, B. O., A. Orvedahl, T. Cheng, R. R. Ram, Y. H. Ou, E. Formstecher, M. Maiti, C. C. Hazelett, E. M. Wauson, M. Balakireva, J. H. Camonis, C. Yeaman, B. Levine, and M. A. White. 2011. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144: 253-267. https://doi.org/10.1016/j.cell.2010.12.018

Cited by

  1. An Integrated Ontology Resource to Explore and Study Host-Virus Relationships vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0108075
  2. Effects of aerobic training on markers of autophagy in the elderly vol.38, pp.2, 2013, https://doi.org/10.1007/s11357-016-9897-y
  3. Pathogenic Role of Autophagy in Rheumatic Diseases vol.23, pp.4, 2016, https://doi.org/10.4078/jrd.2016.23.4.202
  4. Molecular Interactions of Autophagy with the Immune System and Cancer vol.18, pp.8, 2013, https://doi.org/10.3390/ijms18081694
  5. Autophagy induces apoptosis and death of T lymphocytes in the spleen of pigs infected with CSFV vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-14082-9
  6. Suppression of the toll-like receptor 7-dependent type I interferon production pathway by autophagy resulting from enterovirus 71 and coxsackievirus A16 infections facilitates their replication vol.163, pp.1, 2013, https://doi.org/10.1007/s00705-017-3592-x
  7. Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses vol.9, pp.3, 2013, https://doi.org/10.1098/rsob.190009
  8. The relationship between autophagy and the immune system and its applications for tumor immunotherapy vol.18, pp.1, 2019, https://doi.org/10.1186/s12943-019-0944-z
  9. ‘High vault-age’: non-coding RNA control of autophagy vol.10, pp.2, 2013, https://doi.org/10.1098/rsob.190307
  10. Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis vol.85, pp.10, 2020, https://doi.org/10.1134/s0006297920100041