References
- Klionsky, D. J. and S. D. Emr. 2000. Autophagy as a regulated pathway of cellular degradation. Science 290: 1717- 1721. https://doi.org/10.1126/science.290.5497.1717
- Mizushimam, N. and D. J. Klionsky. 2007. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27: 19-40. https://doi.org/10.1146/annurev.nutr.27.061406.093749
- Massey, A. C., C. Zhang, and A. M. Cuervo. 2006. Chaperone- mediated autophagy in aging and disease. Curr. Top. Dev. Biol. 73: 205-235. https://doi.org/10.1016/S0070-2153(05)73007-6
- Cuervo, A. M. and J. H. Dice. 2000. Unique properties of lamp2a compared to other lamp2 isoforms. J. Cell Sci. 113 Pt24: 4441-4450.
- Cuervo, A. M. and J. F. Dice. 1996. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273: 501-503. https://doi.org/10.1126/science.273.5274.501
- Chiang, H. L., S. R. Terlecky, C. P. Plant, and J. F. Dice. 1989. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382-385 https://doi.org/10.1126/science.2799391
- Mizushima, N., Y. Ohsumi, and T. Yoshimori. 2002. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27: 421-429. https://doi.org/10.1247/csf.27.421
- Johansen, T. and T. Lamark. 2011. Selective autophagy mediated by autophagic adapter proteins Autophagy.7: 279-296. https://doi.org/10.4161/auto.7.3.14487
- Mizushima, N., T. Noda, T. Yoshimori, Y. Tanaka, T. Ishii, M. D. George, D. J. Klionsky, M. Ohsumi, and Y. Ohsumi. 1998. A protein conjugation system essential for autophagy. Nature 395: 395-398. https://doi.org/10.1038/26506
- Ohsumi, Y. 2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2: 211-216. https://doi.org/10.1038/35056522
- Bjorkoy, G., T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, and T. Johansen. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171: 603-614. https://doi.org/10.1083/jcb.200507002
- Levine, B. and D. J. Klionsky. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell 6: 463-477. https://doi.org/10.1016/S1534-5807(04)00099-1
- Levine, B. and G. Kroemer. 2008. Autophagy in the pathogenesis of disease. Cell 132: 27-42. https://doi.org/10.1016/j.cell.2007.12.018
- Shintani, T. and D. J. Klionsky. 2004. Autophagy in health and disease: a double-edged sword. Science 306: 990-995. https://doi.org/10.1126/science.1099993
- Nakagawa, I., A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi, T. Kamimoto, A. Nara, J. Funao, M. Nakata, K. Tsuda, S. Hamada, and T. Yoshimori. 2004. Autophagy defends cells against invading group A Streptococcus. Science 306: 1037-1040. https://doi.org/10.1126/science.1103966
- Gutierrez, M. G., S. S. Master, S. B. Singh, G. A. Taylor, M. I. Colombo, and V. Deretic. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119: 753-766. https://doi.org/10.1016/j.cell.2004.11.038
- Xu, Y., C. Jagannath, X. D. Liu, A. Sharafkhaneh, K. E. Kolodziejska, and N. T. Eissa. 2007. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27: 135-144. https://doi.org/10.1016/j.immuni.2007.05.022
- Delgado, M. A., R. A. Elmaoued, A. S. Davis, G. Kyei, and V. Deretic. 2008. Toll-like receptors control autophagy. EMBO J. 27: 1110-1121. https://doi.org/10.1038/emboj.2008.31
- Sanjuan, M. A., C. P. Dillon, S. W. Tait, S. Moshiach, F. Dorsey, S. Connell, M. Komatsu, K. Tanaka, J. L. Cleveland, S. Withoff, and D. R. Green. 2007. Toll-like receptor signalling in macrophages links the autophagy pathway to phago cytosis. Nature 450: 1253-1257. https://doi.org/10.1038/nature06421
- Saitoh, T., N. Fujita, M. H. Jang, S. Uematsu, B. G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456: 264-268. https://doi.org/10.1038/nature07383
- Dengjel, J., O. Schoor, R. Fischer, M. Reich, M. Kraus, M. Muller, K. Kreymborg, F. Altenberend, J. Brandenburg, H. Kalbacher, R. Brock, C. Driessen, H. G. Rammensee, and S. Stevanovic. 2005. Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. Proc. Natl. Acad. Sci. U. S. A. 102: 7922-7927. https://doi.org/10.1073/pnas.0501190102
- Paludan, C., D. Schmid, M. Landthaler, M. Vockerodt, D. Kube, T. Tuschl, and C. Münz. 2005. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307: 593-596. https://doi.org/10.1126/science.1104904
- Schmid, D., M. Pypaert, and C. Münz. 2007. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26: 79-92. https://doi.org/10.1016/j.immuni.2006.10.018
- Pua, H. H., I. Dzhagalov, M. Chuck, N. Mizushima, and Y. W. He. 2007. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204: 25-31. https://doi.org/10.1084/jem.20061303
- Pua, H. H. and Y. W. He. 2007. Maintaining T lymphocyte homeostasis: another duty of autophagy. Autophagy 3: 266-267 https://doi.org/10.4161/auto.3908
- Miller, B. C., Z. Zhao, L. M. Stephenson, K. Cadwell, H. H. Pua, H. K. Lee, N. N. Mizushima, A. Iwasaki, Y. W. He, W. Swat, H. W. Virgin, 4th. 2008. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4: 309-314. https://doi.org/10.4161/auto.5474
- Schmid, D. and C. Münz. 2007. Innate and adaptive immunity through autophagy. Immunity 27: 11-21. https://doi.org/10.1016/j.immuni.2007.07.004
- Yuk, J. M., D. M. Shin, H. M. Lee, C. S. Yang, H. S. Jin, K. K. Kim, Z. W. Lee, S. H. Lee, J. M. Kim, and E. K. Jo. 2009. Vitamin D3 induces autophagy in human monocytes/ macrophages via cathelicidin. Cell Host Microbe 6: 231-243. https://doi.org/10.1016/j.chom.2009.08.004
- Watson, R. O., P. S. Manzanillo, and J. S. Cox. 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150: 803-815. https://doi.org/10.1016/j.cell.2012.06.040
- Mahairas, G. G., P. J. Sabo, M. J. Hickey, D. C. Singh, and C. K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178: 1274-1282. https://doi.org/10.1128/jb.178.5.1274-1282.1996
- Pym, A. S., P. Brodin, L. Majlessi, R. Brosch, C. Demangel, A. Williams, K. E. Griffiths, G. Marchal, C. Leclerc, and S. T. Cole. 2003. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9: 533- https://doi.org/10.1038/nm859
- Smith, J., J. Manoranjan, M. Pan, A. Bohsali, J. Xu, J. Liu, K. L. McDonald, A. Szyk, N. LaRonde-LeBlanc, and L. Y. Gao. 2008. Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect. Immun. 76: 5478-5487. https://doi.org/10.1128/IAI.00614-08
- Rich, K. A., C. Burkett, and P. Webster. 2003. Cytoplasmic bacteria can be targets for autophagy. Cell. Microbiol. 5: 455-468. https://doi.org/10.1046/j.1462-5822.2003.00292.x
- Zheng, Y. T., S. Shahnazari, A. Brech, T. Lamark, T. Johansen, and J. H. Brumell. 2009. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183: 5909-5916. https://doi.org/10.4049/jimmunol.0900441
- Thurston, T. L., G. Ryzhakov, S. Bloor, N. von Muhlinen, and F. Randow. 2009. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10: 1215-1221. https://doi.org/10.1038/ni.1800
- Yuk, J. M., T. Yoshimori, and E. K. Jo. 2012. Autophagy and bacterial infectious diseases. Exp. Mol. Med. 44: 99-108. https://doi.org/10.3858/emm.2012.44.2.032
- Iwasaki, A. and R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987-995. https://doi.org/10.1038/ni1112
- Oh, J. E. and H. K. Lee. 2012. Modulation of pathogen recognition by autophagy. Front Immunol. 3: 44.
- Lee, M. S. and Y. J. Kim. 2007. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76: 447-480. https://doi.org/10.1146/annurev.biochem.76.060605.122847
- Cooney, R., J. Baker, O. Brain, B. Danis, T. Pichulik, P. Allan, D. J. Ferguson, B. J. Campbell, D. Jewell, and A. Simmons. 2010. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16: 90-97. https://doi.org/10.1038/nm.2069
- Travassos, L. H., L. A. Carneiro, M. Ramjeet, S. Hussey, Y. G. Kim, J. G. Magalhaes, L. Yuan, F. Soares, E. Chea, L. Le Bourhis, I. G. Boneca, A. Allaoui, N. L. Jones, G. Nunez, S. E. Girardin, and D. J. Philpott. 2010. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11: 55-62. https://doi.org/10.1038/ni.1823
- Cho, J. H. and C. T. Weaver. 2007. The genetics of inflammatory bowel disease. Gastroenterology 133: 1327-1339. https://doi.org/10.1053/j.gastro.2007.08.032
- Hampe, J., A. Franke, P. Rosenstiel, A. Till, M. Teuber, K. Huse, M. Albrecht, G. Mayr, F. M. De La Vega, J. Briggs, S. Gunther, N. J. Prescott, C. M. Onnie, R. Hasler, B. Sipos, U. R. Folsch, T. Lengauer, M. Platzer, C. G. Mathew, M. Krawczak, and S. Schreiber. 2007. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39: 207-211 https://doi.org/10.1038/ng1954
- Rioux, J. D., R. J. Xavier, K. D. Taylor, M. S. Silverberg, P. Goyette, A. Huett, T. Green, P. Kuballa, M. M. Barmada, L. W. Datta, Y. Y. Shugart, A. M. Griffiths, S. R. Targan, A. F. Ippoliti, E. J. Bernard, L. Mei, D. L. Nicolae, M. Regueiro, L. P. Schumm, A. H. Steinhart, J. I. Rotter, R. H. Duerr, J. H. Cho, M. J. Daly, and S. R. Brant. 2007. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39: 596-604. https://doi.org/10.1038/ng2032
- Liang, X. H., L. K. Kleeman, H. H. Jiang, G. Gordon, J. E. Goldman, G. Berry, B. Herman, and B. Levine. 1998. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J. Virol. 72: 8586-8596.
- Orvedahl, A., S. MacPherson, R. Sumpter, Jr, Z. Tallóczy, Z. Zou, and B. Levine. 2010. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7: 115-127. https://doi.org/10.1016/j.chom.2010.01.007
- Orvedahl, A., D. Alexander, Z. Tallóczy, Q. Sun, Y. Wei, W. Zhang, D. Burns, D. A. Leib, and B. Levine. 2007. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1: 23-35. https://doi.org/10.1016/j.chom.2006.12.001
- Alexander, D. E. and D. A. Leib. 2008. Xenophagy in herpes simplex virus replication and pathogenesis. Autophagy 4: 101-103. https://doi.org/10.4161/auto.5222
- Barton, G. M. 2007. Viral recognition by Toll-like receptors. Semin. Immunol. 19: 33-40. https://doi.org/10.1016/j.smim.2007.01.003
- Lee, H. K. and A. Iwasaki. 2008. Autophagy and antiviral immunity. Curr. Opin. Immunol. 20: 23-29. https://doi.org/10.1016/j.coi.2008.01.001
- Tal, M. C. and A. Iwasaki. 2009. Autophagy and innate recognition systems. Curr. Top. Microbiol. Immunol. 335: 107-121
- Yordy, B. and A. Iwasaki. 2011. Autophagy in the control and pathogenesis of viral infection. Curr. Opin. Virol. 1: 196-203. https://doi.org/10.1016/j.coviro.2011.05.016
- Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, and T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5: 730-737. https://doi.org/10.1038/ni1087
- Yoneyama, M., M. Kikuchi, K. Matsumoto, T. Imaizumi, M. Miyagishi, K. Taira, E. Foy, Y. M. Loo, M. Gale, Jr, S. Akira, S. Yonehara, A. Kato, and T. Fujita. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175: 2851- 2858. https://doi.org/10.4049/jimmunol.175.5.2851
- Foy, E., K. Li, R. Sumpter, Jr, Y. M. Loo, C. L. Johnson, C. Wang, P. M. Fish, M. Yoneyama, T. Fujita, S. M. Lemon, M. Gale, Jr. 2005. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl. Acad. Sci. U. S. A. 102: 2986-2991. https://doi.org/10.1073/pnas.0408707102
- Jounai, N., F. Takeshita, K. Kobiyama, A. Sawano, A. Miyawaki, K. Q. Xin, K. J. Ishii, T. Kawai, S. Akira, K. Suzuki, and K. Okuda. 2007. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. U. S. A. 104: 14050-14055. https://doi.org/10.1073/pnas.0704014104
- Tal, M. C., M. Sasai, H. K. Lee, B. Yordy, G. S. Shadel, and A. Iwasaki. 2009. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl. Acad. Sci. U. S. A. 106: 2770-2775. https://doi.org/10.1073/pnas.0807694106
- Schroder, K. and J. Tschopp. 2010. The inflammasomes. Cell 140: 821-832. https://doi.org/10.1016/j.cell.2010.01.040
-
Shi, C. S., K. Shenderov, N. N. Huang, J. Kabat, M. Abu-Asab, K. A. Fitzgerald, A. Sher, and J. H. Kehrl. 2012. Activation of autophagy by inflammatory signals limits IL-1
$\beta$ production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13: 255-263. https://doi.org/10.1038/ni.2215 - Bodemann, B. O., A. Orvedahl, T. Cheng, R. R. Ram, Y. H. Ou, E. Formstecher, M. Maiti, C. C. Hazelett, E. M. Wauson, M. Balakireva, J. H. Camonis, C. Yeaman, B. Levine, and M. A. White. 2011. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 144: 253-267. https://doi.org/10.1016/j.cell.2010.12.018
Cited by
- An Integrated Ontology Resource to Explore and Study Host-Virus Relationships vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0108075
- Effects of aerobic training on markers of autophagy in the elderly vol.38, pp.2, 2013, https://doi.org/10.1007/s11357-016-9897-y
- Pathogenic Role of Autophagy in Rheumatic Diseases vol.23, pp.4, 2016, https://doi.org/10.4078/jrd.2016.23.4.202
- Molecular Interactions of Autophagy with the Immune System and Cancer vol.18, pp.8, 2013, https://doi.org/10.3390/ijms18081694
- Autophagy induces apoptosis and death of T lymphocytes in the spleen of pigs infected with CSFV vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-14082-9
- Suppression of the toll-like receptor 7-dependent type I interferon production pathway by autophagy resulting from enterovirus 71 and coxsackievirus A16 infections facilitates their replication vol.163, pp.1, 2013, https://doi.org/10.1007/s00705-017-3592-x
- Role of autophagy during the replication and pathogenesis of common mosquito-borne flavi- and alphaviruses vol.9, pp.3, 2013, https://doi.org/10.1098/rsob.190009
- The relationship between autophagy and the immune system and its applications for tumor immunotherapy vol.18, pp.1, 2019, https://doi.org/10.1186/s12943-019-0944-z
- ‘High vault-age’: non-coding RNA control of autophagy vol.10, pp.2, 2013, https://doi.org/10.1098/rsob.190307
- Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis vol.85, pp.10, 2020, https://doi.org/10.1134/s0006297920100041