Growth Response and Adaptability of Poplar Species Treated with Liquid Pig Manure

양돈분뇨 처리에 대한 포플러류의 생장반응 및 적응능력

  • Kim, Hyun-Chul (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Shin, Hanna (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lee, Heon-Ho (Department of Forest Resources, Yeungnam University) ;
  • Yeo, Jin-Kie (Center of Forest Carbon Certification, Korea Forestry Promotion Institute) ;
  • Kang, Kyu-Suk (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 김현철 (국립산림과학원 산림유전자원부) ;
  • 신한나 (국립산림과학원 산림유전자원부) ;
  • 이헌호 (영남대학교 산림자원학과) ;
  • 여진기 (한국임업진흥원 산림탄소인증센터) ;
  • 강규석 (국립산림과학원 산림유전자원부)
  • Published : 2013.09.30

Abstract

This study was conducted to analyze growth characteristics and adaptability of poplar clones under the treatment of liquid pig manure. The average of survival rate was 33% better at control than the treatment under age of 5 years. But, tree height and DBH growth were higher at the treatment than control. Populus euramericana 'Eco28' showed the highest survival rate (97.9%) under the treatment. P. euramericana 'Eco28' and P. deltoides hybrid 'Dorskamp' could be selected as superior clones for height and DBH growth under the liquid pig manure treatment. The above-ground biomass production was also investigated when the poplar clones were 5 years old. The aboveground biomass under the liquid pig manure treatment was, on average. 52.6 ton/ha, which was 80% higher than control (29.1 ton/ha). P. euramericana 'Eco28' (73.6 ton/ha) and P. deltoides hybrid 'Dorskamp' (71.1 ton/ha) showed superior biomass production than other clones at the treatment of liquid pig manure. Based on survival, growth and demage traits, the adaptability of poplar clones to liquid pig manure treatment was estimated. P. deltoides hybrid 'Dorskamp' and P. euramericana 'Eco28' showed better adaptability to the treatment. P. nigra ${\times}$ P. maximowiczii '62-10' and P. koreana ${\times}$ P. nigra var. italic 'Suwon' were identified as poor adaptability clones.

본 연구는 양돈분뇨 처리에 대한 포플러 클론들의 생육반응 및 적응능력을 구명하는데 그 목적이 있다. 양돈분뇨 처리에 따른 포플러 클론들의 생장반응을 조사한 결과, 양돈분뇨 처리구 내 클론별 생존율은 이태리포플러 Eco28클론이 97.9%로 나타나 가장 우수하였다. 평균 생존율은 무처리구가 처리구보다 33% 더 높았다. 수고 및 흉고직경 생장은 양돈분뇨 처리구가 무처리구 보다 각각 10%, 32% 높았으며, 이태리포플러 Eco28클론 및 미루나무 교잡종 Dorskamp 클론이 양돈분뇨 처리에 있어 수고 및 흉고직경 생장이 우수하였다. 양돈분뇨 처리에 따른 5년생 포플러 클론들의 지상부 바이오매스 생장은 처리구가 52.6 ton/ha, 무처리구가 29.1 ton/ha로 처리구가 80% 우수하였다. 양돈분뇨 처리구 내바이오매스 생장은 이태리포플러 Eco28클론 및 미루나무 교잡종 Dorskamp클론이 각각 73.6 ton/ha, 71.1 ton/ha로 나타나 우수하였다. 생존율, 생장특성, 병충해 피해 정도 등을 종합하여 포플러 클론별 양돈분뇨에 대한 적응능력을 분석한 결과, 미루나무 교잡종 Dorskamp클론 및 이태리포플러 Eco28클론이 양돈분뇨에 대한 적응능력이 가장 우수한 것으로 나타났으며, 양황철 62-10클론 및 수원포플러 Suwon클론이 양돈분뇨에 대한 적응능력이 가장 낮게 나타났다.

Keywords

References

  1. 김종진, 홍성각. 1998. 자작나무 컨테이너묘의 경화단계생장에 미치는 UV-B와 수분 스트레스의 효과. 한국임학회지 87(4): 601-610.
  2. 김현철, 여진기, 구영본, 박정현, 백을선. 2009. 양돈분뇨 처리에 따른 속성수의 유시 생육특성. 한국토양비료학회지 42(5): 323-329.
  3. 김현철, 여진기, 신한나, 이헌호. 2011. 양돈분뇨 처리에 따른 수목의 질소저장 및 지상부 바이오매스 추정. 한국임학회지 100(4): 715-721.
  4. 박정현, 여진기, 구영본, 이원우, 김현철, 박치호. 2008. 간척지 성토지 식재 포플러의 SCB액비 처리에 따른 클론별 생장특성. 한국토양비료학회지 41(5): 318-323.
  5. 여진기, 김인식, 구영본, 김영중, 주성현. 2003. 시험림에서 축산폐수 처리에 따른 포플러의 생장과 축산폐수흡수. 한국폐기물학회지 20(8): 742-749.
  6. 여진기, 우관수, 구영본, 김영식. 2007. 하천연변에서 3년생 포플러 및 버드나무 클론의 생육특성 및 적응능력. 한국환경복원녹화기술학회지 10(5): 40-50.
  7. 우관수, 김영식, 구영본, 여진기. 2006. 양돈분뇨 침출수처리에 따른 포플러류의 클론별 생장. 산림과학논문집 69: 196-205.
  8. 우수영, 이동섭, 김동근, 김판기. 2001. 생활쓰레기매립지침출수가 이태리포플러와 자작나무 묘목에 미치는 영향(II). 한국임학회지 90(1): 55-63.
  9. 우수영, 이성한, 이동섭. 2004. 대기오염 피해를 받은 서울시내 가로수의 엽록소함량과 광합성 특성. 농림기상학회지 93(5): 409-414.
  10. 조민석, 김길남, 권기원, 이수원. 2009. 시비처리에 따른 소나무 용기묘와 노지묘의 엽록소 함량과 생장 특성. 한국임학회 하계 학술연구 발표회. pp. 249-251.
  11. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenol-oxidase in Beta vulgaris. Plant Physiology 24: 1-15. https://doi.org/10.1104/pp.24.1.1
  12. Isebrands, J.G. and Karnosky, D.F. 2001. Environmental benefits of poplar culture. In: Dickmann, D.I., Isebrands, J.G., Eckenwalder, J.E., Richardson, J. editors. Poplar Culture in North America. Ottawa, Ontario, Canada: NRC Research Press. p. 207-218.
  13. Ke, J. and Skelly, J.M. 1989. An evaluation of norway spruce in Northeastern United States. Air Pollution and Forest Decline (Bucher, J.B. and Bucher-Wallin, I., eds.). Proc. 14th Int. Meting for Specialists in Air Pollution Effects on Forest Ecosystems, IUFRO P2.05, Interlaken, Switzerland, Oct. 2-8, 1988. Birmensdorf, 1989. p. 55-60.
  14. Kramer, P.J. and Kozlowski, T.T. 1979. Physiology of Woody Plants. Academic Press. pp. 811.
  15. Licht, L.A. and Isebrands, J.G. 2005. Linking phytoremediated pollutant removal to biomass economic oppottunities. Biomass and Bioenergy 28: 203-218. https://doi.org/10.1016/j.biombioe.2004.08.015
  16. Sims, J.T. 1995. Characteristics of animal wastes and waste-amended soils : an overview of the agriculture and environmental issues. In : Steele, K. (Ed.), Animal Waste and the Land-Water Interface, Lewis Publishers, Boca Raton, London. pp. 1-13.
  17. Snowdon, P., Keith, H., Ritson, P., Grierson, P., Adams, M., Montagu, K., Bi, H., Burrows, W., and Eamus, D. 2002. Protocol for sampling tree and stand biomass. National Carbon Accounting Syatem Technical Report 31. Australian Greenhouse Office, Canberra. pp. 66.
  18. Sprent, J.I. and Thomas, R.J. 1984. Nitrogen nutrition of seedling grain legumes : Some taxonomic, morphological and physiological constraints. Plant, Cell and Environment 7: 637-645.