DOI QR코드

DOI QR Code

Li+-exchanged Zeolites X and Y (FAU) from Undried Formamide Solution

  • Kim, Hu Sik (Department of Applied Chemistry, Andong National University) ;
  • Park, Jong Sam (Department of Radiologic Technology, Daegu Health College) ;
  • Kim, Jeong Jin (Department of Earth & Environmental Sciences, Andong National University) ;
  • Suh, Jeong Min (Department of Bio-Environmental Energy, Pusan National University) ;
  • Lim, Woo Taik (Department of Applied Chemistry, Andong National University)
  • Received : 2013.07.18
  • Accepted : 2013.08.07
  • Published : 2013.08.30

Abstract

Two single-crystals of fully dehydrated, partially $Li^+$-exchanged zeolites X (Si/Al = 1.09, crystal 1) and Y (Si/Al = 1.56, crystal 2), were prepared by flow method using 0.1 M $LiNO_3$ at 393 K for 48 h, respectively, followed by vacuum dehydration at 673 K and $1{\times}10^{-6}$ Torr. Their structures were determined by single-crystal X-ray diffraction techniques in the cubic space group $Fd\bar{3}$ and $Fd\bar{3}m$ at 100(1) K for crystals 1 and 2, respectively. They were refined to the final error indices $R_1/wR_2$ = 0.065/0.211 and 0.043/0.169 for crystals 1 and 2, respectively. In crystal 1, about 53 $Li^+$ ions per unit cell are found at three distinct positions; 9 at site I', 19 at another site I', and the remaining 25 at site II. The residual 25 $Na^+$ ions occupy three equipoints; 2 are at site I, 7 at site II, and 16 at site III'. In crystal 2, about 31 $Li^+$ ions per unit cell occupy sites I' and II with occupancies at 22 and 9, respectively; 3, 4, 23, and 3 $Na^+$ ions are found at sites I, I', II, and III', respectively. The extent of $Li^+$ ion exchange into zeolite X (crystal 1) is higher than that of zeolite Y (crystal 2), ca. 73% and 56% in crystals 1 and 2, respectively.

Keywords

References

  1. Bogomolov, V.N. and V. P. Petranovskii. 1986. Growth of NaX zeolite monocrystals up to 0.5 mm. Zeolites. 6: 418-419. https://doi.org/10.1016/0144-2449(86)90020-5
  2. Breck, D.W. 1974. Zeolite molecular sieves. John Wiley & Sons, New York. p. 93.
  3. Bruker-AXS (ver. 6.12), XPREP. 2001. Program for the automatic space group determination. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cromer, D.T. 1965. Anomalous dispersion corrections computed from self-consistent field relativistic dirac-slater wave functions. Acta Crystallogr. 18; 17-23. https://doi.org/10.1107/S0365110X6500004X
  5. Doyle, P.A. and P.S. Turner. 1968. Relativistic hartree-fock X-ray and electron scattering factors. Acta Crystallogr., Sect. A 24: 390-397 https://doi.org/10.1107/S0567739468000756
  6. Feuerstein, M. and R.F. Lobo. 1998. Characterization of Li cations in zeolite LiX by solid-satate NMR spectroscopy and neutron diffraction. Chem. Mater. 10: 2197-2204. https://doi.org/10.1021/cm980112d
  7. Feuerstein, M., R.J. Accardi, and R.F. Lobo. 2000. Adsorption of nitrogen and oxygen in the zeolite LiA and LiX investigated by $^6Li$ and $^7Li$ MAS NMRspectroscopy. J. Phys. Chem. B. 104: 10282-10287. https://doi.org/10.1021/jp000771p
  8. Forano, C., R.C.T. Slade, E. Krogh Andersen., I.G. Krogh Andersen., and E. Prince. 1989. Neutron diffraction determination of full structures of anhydrous Li-X and Li-Y zeolites. J. Solid State Chem. 82: 95-102. https://doi.org/10.1016/0022-4596(89)90227-2
  9. Gaffney, T. R. 1996. Porous solids for air separation. Solid State. Mater. Sci. 1: 69-75. https://doi.org/10.1016/S1359-0286(96)80013-1
  10. Herden, H., W.D. Einicke., and R. Schollner. 1982. Location of Li-ions in synthetic zeolites X and Y. Zeolites. 2: 131-134. https://doi.org/10.1016/S0144-2449(82)80014-6
  11. Ho, K., H.S. Lee, B.C. Leano, T. Sun., and K. Seff. 1995. Failure of ion exchange into zeolites A and X from four diverse nonaqueous solvents. Zeolites. 15: 377-381. https://doi.org/10.1016/0144-2449(94)00063-X
  12. Ibers, J.A. and W.C. Hamilton. 1974. International Tables for X-ray Crystallography. Vol. IV (Kynoch Press, Birmingham, England), pp. 71-98
  13. Kim, H.S., D. Bae, W.T. Lim, and K. Seff. 2012a. $Li^+$ exchange into zeolite Na-Y (FAU) from aqueous methanol. Singlecrystal structures of fully dehydrated Li, Na-Y. J. Phys. Chem. C. 116: 9009-9018. https://doi.org/10.1021/jp300321x
  14. Kim, H.S., S.O. Ko, and W.T. Lim. 2012b. Single-crystal structures of $Li^+$-exchanged zeolite X (FAU, Si/Al = 1.09) from aqueous solution depends on ion-exchange temperatures at 293 and 333 K. Bull. Korean Chem. Soc. 33: 3303-3310. https://doi.org/10.5012/bkcs.2012.33.10.3303
  15. Lee, S.H., Y. Kim, D.S. Kim, and K. Seff. 1998. Crystal structure of dehydrated $Rb^+$-exchanged zeolite X, $Rb_{71}Na_{21}Si_{100}Al_{92}O_{384}$. Bull. Korean Chem. Soc. 19; 98-103.
  16. Lide, D.R. 1996/1997a. Handbook of Chemistry and Physics, 77th ed.; CRC Press: Boca Raton, FL, p 9-55.
  17. Lide, D.R. 1996/1997b. Handbook of Chemistry and Physics, 77th ed.; CRC Press: Boca Raton, FL, p 12-14.
  18. Lim, W. T., S.M. Seo, L.Z. Wang, G.Q. Lu, N.H. Heo, and K. Seff. 2010. Single-crystal structures of highly $NH^{4+}$-exchanged, fully deaminated, and fully $Tl^+$-exchanged zeolite Y (FAU, Si/Al = 1.56), all fully dehydrated. Micropor. Mesopor. Mater. 129: 11-21. https://doi.org/10.1016/j.micromeso.2009.08.028
  19. Lim, W.T., S. Y. Choi, J. H. Choi, Y. H. Kim, N. H. Heo, and K. Seff. 2006. Single-crystal structure of fully dehydrated fully K+-exchanged zeolite Y (FAU), $K_{71}Si_{121}Al_{71}O_{384}$. Micropor. Mesopor. Mater. 92; 234-242. https://doi.org/10.1016/j.micromeso.2005.11.052
  20. Moreno-Gutierrez, B.Y. and M.T. Olguin. 2003. Mercury removal from aqueous and organo-aqueous solutions by natural Mexican erionite. J. Radioanal. Nucl. Chem. 256: 345-348. https://doi.org/10.1023/A:1023962107064
  21. Olson, D. H.1995. The crystal structure of dehydrated NaX. Zeolites. 15: 439-443. https://doi.org/10.1016/0144-2449(95)00029-6
  22. Otwinowski, Z. and W. Minor. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276: 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  23. Plevert, J., F.D. Renzo, and F. Fajula. 1997. Structure of dehydrated zeolite Li-LSX by neutron diffraction: Evidence for a low-temperature orthorhombic faujasite. J. Phys. Chem. B. 101: 10340-10346. https://doi.org/10.1021/jp9714330
  24. Seff, K. 2010. A general method for the ion exchange of zeolites utilizing the volatility of thallous compounds as leaving products. J. Phys. Chem. C. 114: 13295-13299. https://doi.org/10.1021/jp101477k
  25. Sheldrick, G.M. 1997. SHELXL97, Program for the refinement of crystal structure. University of Gottingen, Germany.
  26. Su, H., H.S. Kim, S.M. Seo, S.O. Ko, J.M. Suh, G.H. Kim, and W.T. Lim. 2012. Location of $Na^+$ ions in fully dehydrated $Na^+$-saturated zeolite Y (FAU, Si/Al = 1.56). Bull. Korean Chem. Soc. 33: 2785-2788. https://doi.org/10.5012/bkcs.2012.33.8.2785
  27. Van Bekkum, H., E.M. Flanigen, P.A. Jacobs, and J.C. Jansen. 2001. Introduction to zeolite science and practice. Elsevior. p. 44.
  28. Weast, R.C. 1989/1990. Handbook of Chemistry and Physics, 70th ed.; CRC Press: Cleveland, OH, p F-187.
  29. Wozniak, A., B. Marler, K. Angermund, and H. Gies. 2008. Water and cation distribution in fully and partially hydrated Li-LSX zeolite. Chem. Mater. 20: 5968-5976. https://doi.org/10.1021/cm703654a
  30. Zhu, L. and K. Seff. 1999. Reinvestigation of the crystal structure of dehydrated sodium zeolite X. J. Phys. Chem. B. 103: 9512-9518.

Cited by

  1. Characterization of Li+-ion Exchanged Zeolite Y using Organic Solvents vol.48, pp.3, 2015, https://doi.org/10.7745/KJSSF.2015.48.3.180