DOI QR코드

DOI QR Code

Modeling of the lifetime prediction of a 12-V automotive lead-acid battery

차량용 납축전지의 수명 예측 모델링

  • 김성태 (아주대학교 화학공학과) ;
  • 이정빈 (아주대학교 에너지시스템 학과) ;
  • 김의성 (아주대학교 에너지시스템 학과) ;
  • 신치범 (아주대학교 에너지시스템 학과)
  • Received : 2013.06.07
  • Accepted : 2013.11.08
  • Published : 2013.12.31

Abstract

The conventional lead acid battery is optimized for cranking performance of engine. Recently electric devices and fuel economy technologies of battery have influenced more deep cycle of dynamic behavior of battery. I also causes to reduce battery life-time. This study proposed that aging battery model is focused for increasing of battery durability. The stress factors of battery aging consist of discharge rate, charging time, full charging time and temperature. This paper considers the electrochemical kinetics, the ionic species conservation, and electrode porosity. For prediction of battery life cycle we consider battery model containing strong impacts, corrosion of positive grid and shedding. Finally, we validated that modeling results were compared with the accelerated thermal measurement data.

일반 납축전지는 차량의 시동 성능 위주로 최적 설계되어 있다. 최근 차량 전장 시스템과 납축전지를 활용한 연비기술 적용의 증가로 납축전지의 사용 빈도가 늘어나고 있다. 연비기술 적용은 납축전지의 잦은 충방전 반응을 일으켜 납축전지 내구 수명을 단축시키고 있다. 본 연구에서는 납축전지의 노화 수명 모델 구현을 통해 배터리 내구 수명을 예측하는 방법을 제시하고자 한다. 납축전지의 노화에 영향을 미치는 요인은 방전율, 충전 시간, 완충 시간, 온도 조건 등이 있다. 본 논문에서는 납축전지의 동적 거동을 예측하기 위하여 전기화학반응 속도론, 이온의 전달현상, 전극 공극률의 시간에 따른 변화를 고려하였다. 수명 예측을 위해서 노화 메커니즘 중 노화에 가장 큰 영향을 주는 극판 부식 현상과 활물질 탈락을 노화 모델링에 반영하였다. 개발된 납축전지의 노화 모델을 검증하기 위하여 납축전지의 가속 충방전 시험을 수행하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Lander, J. Further Studies on the Anodic Corrosion of Lead in $H_{2}SO_{4}$ Solutions. Journal of The Electrochemical Society, 1956, 103, 1-8. https://doi.org/10.1149/1.2430227
  2. Ruetschi, P. Influence of Crystal Structure and Interparticle Contact on the Capacity of $PbO_{2}$ Electrodes. Journal of The Electrochemical Society, 1992, 139, 1347-1351. https://doi.org/10.1149/1.2069410
  3. Culpin, B.; Rand, D. Failure modes of lead/acid batteries. Journal of Power Source, 1991, 36, 415-438. https://doi.org/10.1016/0378-7753(91)80069-A
  4. Armenta-Deu, C; Donaire, T. Determination of an ageing factor for lead/acid batteries. 1. Kinetic aspects. Journal of Power Source, 1991, 58, 123-133.
  5. Wenzl, H.; Baring-Gould, I.; Kaiser, R.; Liaw, B.Y.Life prediction of batteries for selecting the technically most suitable and cost effective battery. Journal of Power Source, 1991, 58, 123-133.
  6. Sauer, D.; Karden, E.; Fricke, B.; Blanke, H. Charging performance of automotive batteries-An underestimated factor influencing lifetime and reliable battery operation. Journal of Power Source, 2007, 168, 22-30. https://doi.org/10.1016/j.jpowsour.2006.11.064
  7. Thele, M.; Schiffer, J.; Karden, E. Surewaard, E. Modeling of the charge acceptance of lead-acid batteries. Journal of Power Source, 2007, 168, 31-39. https://doi.org/10.1016/j.jpowsour.2006.11.088
  8. Gu, H.; Nguyen, T.; White, R. Rate-A Mathematical Model of a Lead-Acid Cell Discharge, Rest, and Charge. Journal of The Electrochemical Society, 1987, 134, 2953-2960. https://doi.org/10.1149/1.2100322
  9. Gu, W.; Wang, C.; Liaw, B. Rate-Numerical modeling of coupled electrochemical and transport processes in lead-acid batteries. Journal of The Electrochemical Society, 1997, 144, 2053-2061. https://doi.org/10.1149/1.1837741
  10. Dimpault-Darcy, E.; Groiss, R.; Doring, H.; Garche J. Rate-Determining Step Investigations of Oxidation Processes at the Positive Plate during Pulse Charge of Valve-Regulated Lead- Acid Batteries. Journal of The Electrochemical Society, 1995, 146, 3949-3957.
  11. Bernardi, D. M.; Carpenter, M. L. A Mathematical Model of the Oxygen- Recombination Lead-Acid Cell. Journal of The Electrochemical Society, 1995, 142, 2631-2642. https://doi.org/10.1149/1.2050066
  12. Newman, J.; Tiedemann, W. Simulation of Recombinant Lead-Acid Batteries. Journal of The Electrochemical Society, 1997, 144, 3081-3091. https://doi.org/10.1149/1.1837963
  13. Srinivasan, V.; Wang, G. Q.; Wang, C. Y. Mathematical Modeling of Current-Interrupt and Pulse Operation of Valve-Regulated Lead Acid Cells. Journal of The Electrochemical Society, 2001, 150, A316-A325.