DOI QR코드

DOI QR Code

Gas Transport Properties of Crosslinked Polyimide Membranes Induced by Aliphatic Diamines with Different Chain Length

사슬 길이가 다른 지방족 디아민으로 가교된 폴리이미드 분리막의 기체 투과 특성

  • Lee, Hye Rim (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Jung Moo (.Aekyung Petrochemical Co., LTD.) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 이혜림 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 이정무 (애경유화 중앙연구소) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2013.11.24
  • Accepted : 2013.12.23
  • Published : 2013.12.31

Abstract

2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) based polyimide (PI) were crosslinked with 1,2-Diaminoethane (DAE) and 1,6-Diaminohexane (DAH) to enhance gas transport properties. Fourier transform infrared (FT-IR) studies show that imide groups were converted into amide groups during crosslinking process. Thermogravimetric analysis (TGA) results indicate that the degradation temperature of crosslinked PI membranes decreased after crosslinking. This is due to degradation of alkyl group in crosslinking agent. The d-space of crosslinked PI membranes decreased with increasing crosslinking time. The ideal permeability for $CH_4$, $N_2$, $O_2$, and $CO_2$ decreased after crosslinking and the ideal permeability of crosslinked PI membranes induced by DAH is larger than that by DAE. In contrast, the permselectivity of $CO_2/CH_4$, $CO_2/N_2$ and $O_2/N_2$ increased during crosslinking. For the gas pair of $CO_2/CH_4$, the maximum increment is about 39.5% after 6 minutes of DAE crosslinking. Also, that of $O_2/N_2$ gas pair is about 20.5% after 6 minutes of DAE crosslinking. According to these result, DAE is more suitable for enhanced permselectivity than DAH. On the contrary, DAE is not useful for $CO_2/N_2$ separation due to reduction in $CO_2/N_2$ permselectivity after 3 minutes DAE crosslinking.

폴리이미드 기체 분리막의 기체 분리 성능을 향상시키기 위해서 2,3,5,6-Tetramethyl-1,4-phenylenediamine(TMPD) 구조를 지닌 폴리이미드를 1,2-Diaminoethane (DAE)과 1,6-Diaminohexane (DAH)으로 가교시켜 분리막을 제조하였다. Fourier transform infrared spectroscopy (FT-IR)를 이용해 가교 후 이미드 고리가 아미드 그룹으로 전환됨을 확인하였다. 폴리이미드의 열분해 온도는 가교 후 감소하였으며, 이는 가교제의 알킬기 분해 때문이다. 가교된 폴리이미드 분리막의 d-spacing은 가교 시간이 증가함에 따라 감소하였다. 가교 후 $CH_4$, $N_2$, $O_2$, $CO_2$ 기체의 투과도는 가교 전 보다 감소하였으며, DAH로 가교된 분리막이 DAE보다 더 높은 투과도를 나타냈다. 투과도와 달리 $CO_2/CH_4$, $CO_2/N_2$, $O_2/N_2$ 기체 선택도 모두 가교 시간이 길어질수록 증가된 결과가 나타났다. $CO_2/CH_4$ 기체의 선택도는 DAE로 6분 가교 시 최대 증가치를 나타냈으며 39.5%까지 증가하였다. $O_2/N_2$ 선택도 또한 DAE로 6분 가교 시 최대 증가치를 가지며 20.5%까지 증가하였다. 이를 통해서 DAE가 DAH보다 선택도 증가에 적합한 가교제임을 예상할 수 있으며 이와 달리 $CO_2/N_2$ 선택도는 DAE로 3분 가교 시 감소해 $CO_2/N_2$ 분리에는 적합하지 않은 결과가 나타났다.

Keywords

References

  1. W. J. Jang, Y. I. Yoon, S. D. Park, Y. W. Rhee, and I. H. Baek, "Absorption of $CO_{2}$ Using Mixed Aqueous Solution of N-methyldiethanolamine with Piperazine for Pre-combustion $CO_{2}$ Capture", J. Korean Ind. Eng. Chem., 19, 645 (2008).
  2. S. H. Jhung and J. S. Chang, "Adsorption and Storage of Natural Gas by Nanoporous Adsorbents", J. Korean Ind. Eng. Chem., 20, 117 (2009).
  3. Y. J. Yoo, H. S. Kim, R. Singh, P. Xiao, P. A. Webley, and A. L. Chaffee, "Preparation of NaX Zeolite Coated Honeycomb Adsorbents and It's Carbon Dioxide Adsorption Characteristics", J. Korean Ind. Eng. Chem., 20, 663 (2009).
  4. S. E. Nam, A. Park, and Y. I. Park, "Separation and Recovery of F-gases", Membrane Journal, 23, 189 (2013).
  5. T. H. Kim, J. C. Jeong, J. M. Park, and C. H. Woo, "A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane", Membrane Journal, 20, 267 (2010) .
  6. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  7. D. Y. Oh and S. Y. Nam, "Developmental Trend of Polyimide Membranes for Gas Separation", Membrane Journal, 21, 307 (307).
  8. H. W. Kim and H. B. Park, "Gas Transport Behavior of Polydopamine-Coated Composite Membranes", Membrane Journal, 2, 136 (2013).
  9. K. B. Kim, E. H. Cho, S. I. Cheong, H. K. Lee, and J. W. Rhim, "Gas Separation Study of PEBAX 3533 and PEG Blended Membranes", Membrane Journal, 23, 144, (2013).
  10. N. E. Kim, T. B. Kim, and S. L. Hong, "Preparation and Characterization of PTMSP/PDMSzeolite Composite Membranes for Gas Separation", Membrane Journal, 22, 342 (2012).
  11. A. F. Ismail and F. Aziz, "Chemical Cross-Linking Modifications of Polymeric Membranes for Gas Separation Applications", Membrane Modifications Technology and Applications, Eds. N. Hilal, M, Khayet and C. J. Wright, pp. 368, New York, NY (2012).
  12. H. Kita, T. Inada, K. Tanaka, and K. Okamoto, "Effect of Photocrosslinking on Permeability and Permselectivity of Gases through Benzophenone Containing polyimide", J. Membr. Sci., 87, 139 (1994). https://doi.org/10.1016/0376-7388(93)E0098-X
  13. A. M. Kratochvil and W. J. Koros, "Decarboxylation Induced Cross-linking of a Polyimide for Enhanced $CO_{2}$ Plasticization Resistance", Macromolecules, 41, 7920 (2008). https://doi.org/10.1021/ma801586f
  14. C. Staudt-Bickel and W. J. Koros, "Improvement of $CO_{2}$/$CH_{4}$ Separation Characteristics of Polyimides by Chemical Crosslinking", J. Membr. Sci., 155, 145 (1999). https://doi.org/10.1016/S0376-7388(98)00306-8
  15. Y. Liu, R. Wang, and T. Chung, "Chemical Crosslinking Modification of Polyimide Membranes for Gas Separation", J. Membr. Sci., 189, 231 (2001). https://doi.org/10.1016/S0376-7388(01)00415-X
  16. K. Vanherck, G. Koeckelberghs, and I. F. J. Vankelecom, "Crosslinking Polyimides for Membrane Applications: A review", Prog. Polym. Sci., 38, 874 (2013). https://doi.org/10.1016/j.progpolymsci.2012.11.001
  17. L. Shao, T. Chung, S. H. Goh, and K. P. Pramoda, "Polyimide Modification by a Linear Aliphatic Diamine to Enhance Transport Performance and Plasticization Resistance", J. Membr. Sci., 256, 46 (2005).
  18. L. Shao, L. Liu, S. Cheng, Y. Huang, and J. Ma, "Comparison of Diamino Cross-linking in Different Polyimide Solutions and Membranes by Precipitation Observation and Gas Transport", J. Membr. Sci., 312, 174 (2008). https://doi.org/10.1016/j.memsci.2007.12.060
  19. K. Vanherck, A. C. Odena, G. Koeckelberghs, T. Dedroog, and I. Vankelecom, "A Simplified Diamine Crosslinking Method for PI Nanofiltration Membranes", J. Membr. Sci., 353, 135 (2010). https://doi.org/10.1016/j.memsci.2010.02.046
  20. K. Tanaka, H. Kita, M. Okano, and K. Okamoto, "Permeability and Permselectivity of Gases in Fluorinated and Non-fluorinated Polyimides", Polymer, 33, 585 (1992). https://doi.org/10.1016/0032-3861(92)90736-G
  21. B. S. Lee, T. Y. Kim, D. H. Kim, B. S. Lee, S. W. Yoon, H. S. Im, and J. W. Rhim, "Gas Permeation Properties of Brominated Polysulfone Membranes", Membrane Journal, 19, 150 (2009).
  22. L. Shao, T. Chung, S. Goh, and K. Pramoda, "The Effects of 1,3-cyclohexanebis (methylamine) Modification on Gas Transport and Plasticization Resistance of Polyimide Membranes", J. Membr. Sci., 267, 78 (2005). https://doi.org/10.1016/j.memsci.2005.06.004
  23. C. Zhou, T. Chung, R. Wang, Y. Liu, and S. H. Goh, "The Accelerated $CO_{2}$ Plasticization of Ultra-thin Polyimide Films and the Effect of Surface Chemical Cross-linking on Plasticization and Physical Aging", J. Membr. Sci., 225, 125 (2003). https://doi.org/10.1016/j.memsci.2003.07.006
  24. C. Cao, T. Chung, Y. Liu, R. Wang, and K. Pramoda, "Chemical Cross-linking Modification of 6FDA-2, 6-DAT Hollow Fiber Membranes for Natural Gas Separation", J. Membr. Sci., 216, 257 (2003). https://doi.org/10.1016/S0376-7388(03)00080-2
  25. Y. Liu, T. Chung, R. Wang, D. F. Li, and M. L. Chng, "Chemical Cross-linking Modification of Polyimide/Poly (ether sulfone) Dual-layer Hollow Fiber Membranes for Gas Separation", Ind. Eng. Chem. Res., 42, 1190 (2003). https://doi.org/10.1021/ie020750c
  26. P. Tin, T. Chung, Y. Liu, R. Wang, S. Liu, and K. Pramoda, "Effects of Cross-linking Modification on Gas Separation Performance of Matrimid Membranes", J. Membr. Sci., 225, 77 (2003). https://doi.org/10.1016/j.memsci.2003.08.005
  27. S. Matteucci, Y. Yampolskii, B. D. Freeman, and I. Pinnau, "Transport of Gases and Vapors in Glassy and Rubbery Polymers", Materials Science of Membranes for Gas and Vapor Separation, Eds. Y. Yampolskii, I. Pinnau and B. D. Freeman, pp. 6, John Wiley & Sons, Ltd, Chichester, UK (2006).
  28. M. Mulder, "Basic Principles of Membrane Technology", pp. 233, Springer, New Yourk, NY (1996).
  29. S. Liu, R. Wang, Y. Liu, M. Chng, and T. Chung, "The Physical and Gas Permeation Properties of 6FDA-durene/2, 6-diaminotoluene Copolyimides", Polymer, 42, 8847 (2001). https://doi.org/10.1016/S0032-3861(01)00439-6
  30. W. Lin, R. H. Vora, and T. Chung, "Gas Transport Properties of 6FDA‐durene/1, 4‐phenylenediamine (pPDA) Copolyimides", J. Polm. Sci., Part B: Polm. Phys., 38, 2703 (2000). https://doi.org/10.1002/1099-0488(20001101)38:21<2703::AID-POLB10>3.0.CO;2-B
  31. Y. Xiao, L. Shao, T. Chung, and D. A. Schiraldi, "Effects of Thermal Treatments and Dendrimers Chemical Structures on the Properties of Highly Surface Cross-linked Polyimide Films", Ind. Eng. Chem. Res., 44, 3059 (2005). https://doi.org/10.1021/ie048837g
  32. H. Zhao, Y. Cao, X. Ding, M. Zhou, and Q. Yuan, "Effects of Cross-linkers with Different Molecular Weights in Cross-linked Matrimid 5218 and Test Temperature on Gas Transport Properties", J. Membr. Sci., 323, 176 (2008). https://doi.org/10.1016/j.memsci.2008.06.026
  33. T. Chung, M. L. Chng, K. Pramoda, and Y. Xiao, "PAMAM Dendrimer Induced Cross-linking Modification of Polyimide Membranes", Langmuir, 20, 2966 (2004). https://doi.org/10.1021/la034610z