Study on the PVdF Nanofibers and Graphene Oxide Hybrid Membrane

PVdF 나노섬유와 Graphene Oxide 하이브리드막에 관한 연구

  • Jung, Hyemin (Department of Chemical System Engineering, Keimyung University) ;
  • Chen, Weidong (Department of Chemical System Engineering, Keimyung University) ;
  • Yang, Woo Seok (Electronic Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Byun, Hongsik (Department of Chemical System Engineering, Keimyung University)
  • 정혜민 (계명대학교 화학시스템공학과) ;
  • 진유동 (계명대학교 화학시스템공학과) ;
  • 양우석 (전자부품연구원) ;
  • 변홍식 (계명대학교 화학시스템공학과)
  • Received : 2013.04.08
  • Accepted : 2013.04.18
  • Published : 2013.06.30

Abstract

Recently, many applications with grapheneoxide (GO) have been reported. But GO membrane for water treatment has not been developed. In this study we prepared polyvinylidene difluoride (PVdF) nanofiber/GO hybrid membrane (FG) for the microfiltration application. The PVdF substrate membrane was prepared by using the electrospinning method with a solution of PVdF in N,N-dimethylacetamide (DMAc) and acetone. GO sheets used in this study were prepared by modified Hummer's method. The PVdF/GO hybrid membrane was finally prepared by spraying the GO solution dispersed in ethanol on the PVdF nanofiber. The successfully prepared FG was thoroughly examined by SEM, Raman, contact angle, porometer and UTM, and water-flux was measured with designed cell (Dead-End Cell). From the contact angle results, it was found that the surface of FG membrane was reformed by hydrophilic property and the water permeability was increased about 2.5 times than that of the nascent PVdF membrane, indicating the possible alternative of the commercial MF membrane.

본 연구는 microfiltration (MF) 적용을 위한 PVdF/GO 하이브리드 나노섬유막(FG) 제조에 관한 것이다. 지지체인 PVdF (polyvinylidene difluoride) 나노섬유막은 N,N-Dimethylacetamide (DMAc)와 아세톤에 PVdF를 녹여 방사용액 제조 후 전기방사법을 이용하여 제조하였다. 본 연구에서 사용된 GO (grapheme oxide) sheets는 Hummer's 방법에 따라 제조되었으며, PVdF 나노섬유 지지체 위에 에탄올에 분산시킨 GO용액을 분사함으로써, 최종적으로 PVdF/GO 하이브리드 나노섬유막(FG)을 제조하였다. FG막은 SEM, Raman, 접촉각, 기공특성분석장치(Porometer), 만능인장시험기(UTM)를 사용하여 조사하였고, 수투과도 분석은 제작된 셀(Dead-End Cell)을 이용하여 측정하였다. 접촉각 측정 결과로부터 제조된 FG막의 표면이 친수성으로 개질되었음을 확인할 수 있었으며, 수투과도값은 PVdF막에 비해 약 2.5배 향상된 것을 확인할 수 있었다.

Keywords

References

  1. A. K. Geim, "Graphene: status and prospects", Science. 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  2. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. kohlhaas, E. J. Zimmney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, "Graphenebased composite materials", Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  3. S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes", Nat. Nanotechnol, 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58
  4. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenk, S. T. Nguyen, and R.S. Ruoff, "Preparation and characterization of graphene oxide paper", Nature, 448, 457 (2007). https://doi.org/10.1038/nature06016
  5. A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri, and I. Dekany, "Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids", Langmuir, 19, 6050 (2003). https://doi.org/10.1021/la026525h
  6. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhass, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene- based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  7. J. N. Israelachvili, "Intermolecular and surface forces", pp. 450, Academic Press, San Diego, SD (1992).
  8. T. Oe, H. Koide, H. Hirokawa, and K. Okukawa, "Performance of membrane filtration system used for water treatment", Desalination, 106, 107 (1996). https://doi.org/10.1016/S0011-9164(96)00098-7
  9. R. J. Wakeman and C. J. Williams, "Additional techniques to improve microfiltration", Separation and Purification Technology, 26, 3 (2002). https://doi.org/10.1016/S1383-5866(01)00112-5
  10. N. Chanunpanich, B. S. Lee, and H. S. Byun, "A Study of electrospun PVDF on PET sheet", Macromol. Res., 16, 3(2008).
  11. J. F. Hester and A. M. Mayes, "Design and performance of foul-resistant poly (vinylidene fluoride) membranes prepared in a single-step by surface segregation", J. Membr. Sci., 202, 119 (2002). https://doi.org/10.1016/S0376-7388(01)00735-9
  12. S. J. Oha, N. W. Kimb, and Y. T. Leea, "Preparation and characterization of PVDF/$TiO_{2}$ organic-inorganic composite membranes for fouling resistance improvement", J. Membr. Sci., 345, 13 (2009). https://doi.org/10.1016/j.memsci.2009.08.003
  13. S. Boributh, A. Chanachai, and R. Jiraratananon, "Modification of PVDF membrane by chitosan solution for reducing protein fouling", J. Membr. Sci., 342, 97 (2009). https://doi.org/10.1016/j.memsci.2009.06.022
  14. W. S. Hummers Jr. and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  15. W. G. Jang, J. Hou, and H. S. Byun, "Preparation and characterization of PVdF nanofiber ion exchange membrane for the PEMFC application", Desalination and Water Treatment, 34, 1 (2011). https://doi.org/10.5004/dwt.2011.3193
  16. K. H. Hwang, B. M. Kwon, and H. S. Byun, "Preparation of PVdF nanofiber membranes by electrospinning and their use as secondry battery separators", J. Membr. Sci., 378, 111 (2011). https://doi.org/10.1016/j.memsci.2011.06.005
  17. N. Chanunpanich, H. S. Byun, and I. K. Kang, "Membrane morphology: phase to electrospinning", Membrane Journal, 15, 85 (2005).
  18. B. M. Kwon, M. Y. Ko, B. P. Hong, and H. S. Byun, "Preparation and characterization of pore-filled membrane based on polypropylene with poly (vinylbenzyl chloride) by using in-situ cross-linking technique", Membrane Journal, 10, 13 (2008).