동전기법을 이용한 점토성-사질토에 존재하는 자원 회수 증진을 위한 적용성 연구

Application for Improving Resource Recover at Clay-Sandy Soil based on Electrokinetic Technology

  • Shin, Sanghee (Geotechnical Engineering Research Division, Korea Institute of Construction and Technology)
  • 발행 : 2013.10.01

초록

점토성-사질토에 분포하는 양이온 금속들과 석유를 효율적으로 회수하기 위한 방법으로 동전기법 연구를 제안하였다. 제안된 동전기법은 투수계수가 낮은 매질 속에 존재하는 중금속에 포함되어 있는 양이온 금속 또는 석유등의 회수를 위해, 양극탱크(Anode chamber)에서 발생하는 잉여가스의 압력을 이용해서 점토성-사질토 샘플에 재주입하여 회수하는 기법이다. 제안된 동전기법의 성능을 확인하기 위해 제작된 샘플은 총 7일간에 점진적으로 압력을 증가시켜 최종 30psi($2.11kgf/cm^2$)의 압력으로 압축과정을 거쳐 완성되었다. 압축 전 샘플 내에 구리링을 삽입하여, 실험 종료 후 구리링의 변화된 모습을 관찰하였다. 본 연구에서 사용된 모듈은 가압식 모듈과 비가압식 모듈이고, 각각의 실험 테스트는 24시간 동안 2V/cm의 전압 경사 조건으로 연속적인 처리 공정으로 진행하였다. 그 결과, 가압식 모듈의 효율이 비가입식 모듈보다 우수한 것으로 나타났다.

Electrokinetics technology is proposed for improving the recovery metals ion and oil from clay-sandy soil. In order to restore or extract them from clay-sandy soil, the gas produced by anode chamber is re-injected to the clay-sandy soil(sample). Samples produced in this study were completed to verify the proposed performance for 7 days by gradually increasing the pressure to the final pressure of 30psi($2.11kgf/cm^2$) through the compression process. Before compression, the copper rings were inserted into the sample, allowing us to observe the changes in appearance of copper ring after the end of the experiment. In this study, pressurized module and non-pressurized module were tested, respectively. The condition of test is a continuous process and the voltage gradient is 2V/cm during 24 hours. As a result, the efficiency of pressurized module is better than non-pressurized module.

키워드

참고문헌

  1. Ambah, S. A., Chilingar, G. V. and Beeson, C. M.(1964), Use of direct electrical current for increasing the flow rate of reservoir fluids during petroleum recovery, Journal of Canadian Petroleum Technology, Vol. 3, No. 1, pp. 8-14. https://doi.org/10.2118/64-01-02
  2. Chilingar, G. V., Adamson, L. G., Armstrong, R. A. and Beeson, C. M.(1964), Soils stabilized through electroosmosis, Southwest Builder and Contractor, Vol. 145, No. 24, pp. 100-102.
  3. Chilingar, G. V., Amba, S. A. and Beeson, C. M.(1965), Application of electrokinetic phenomena in civil engineering and petroleum engineering, Annals of the New York Academy of Science Vol. 118, No. 14, pp. 585-602.
  4. Chilingar, G. V., Adamson, L. G., Rieke, H. H. and Gray, R. R.(1968), Electrochemical treatment of shrinking soils, Engineering Geology, Vol. 2, No. 3, pp. 197-203.
  5. Pamukcu, S., Weeks, A. and Wittle, J. K.(1997), Electrochemical extraction and stabilization of selected inorganic species in porous media, Journal of Hazardous Materials, Vol. 55, No. 1-3, pp. 305-318. https://doi.org/10.1016/S0304-3894(97)00025-3
  6. Pamukcu, S., Weeks, A. and Wittle, J. K.(2004), Enhanced reduction of Cr (VI) by direct electrical current in a contaminated clay, Environmental Science Technology, Vol. 38, No. 4, pp. 1236-1241. https://doi.org/10.1021/es034578v
  7. Shin, S. H., Chilingar, G. V., Haroun, M., Ghosh, B., Meshkati, N., Pamukcu, S., Wittle, J. K. and Badawi, M. A.(2012), The effect of generated chlorine gas on electroremediation of heavy metals from offshore muds, Journal of Environmental Protection, Vol. 3, No. 5, pp. 363-373. https://doi.org/10.4236/jep.2012.35046
  8. Shin, S. H., Chilingar, G. V., Haroun, M., Wittle, J. K., Meshkati, N., Pamukcu, S., Jeoung, J. H. and Koo, H. B.(2013), Electrokinetics technology to improve acidizing of carbonate reservoir rocks, Journal of Environmental Protection, Vol. 4, No. 4A, pp. 1-3.
  9. Tchilingarian, G. V.(1952), Possible utilization of electrophoretic phenomenon for separation of fine sediments into grades, Journal of Sedimentary Petrology, Vol. 22, No. 1, pp. 29-32.
  10. Wittle, J. K., Hill, D. G. and Chilingar, G. V.(2011), Direct electric current oil recovery (EEOR) - A new approach to enhancing oil production, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 33, No. 9, pp. 805-822. https://doi.org/10.1080/15567036.2010.514843