DOI QR코드

DOI QR Code

Robust High-Gain Observer Based SOC Estimator for Uncertain RC Model of Li-Ion Batteries

불확실성을 갖는 RC 모델 기반의 리튬이온 배터리 SOC 추정을 위한 강인한 고이득 관측기 설계

  • Lee, Jong-Yeon (Divison of Electrical Electronic and Control Engineering, Kongju National University) ;
  • Kim, Wonho (Divison of Electrical Electronic and Control Engineering, Kongju National University) ;
  • Hyun, Chang-Ho (Divison of Electrical Electronic and Control Engineering, Kongju National University)
  • 이종연 (공주대학교 전기전자제어공학부) ;
  • 김원호 (공주대학교 전기전자제어공학부) ;
  • 현창호 (공주대학교 전기전자제어공학부)
  • Received : 2013.04.10
  • Published : 2013.06.25

Abstract

This paper proposes the robust high-gain observer based SOC estimatro for uncertain RC model of Li-Ion batteries. In general, RC battery model has inevitable uncertainties and it cause some negative effect to estimate the accurate SOC of Li-Ion batteries. The proposed estimator overcomes such weakness with two techniques; high-gain observer design technique and sliding mode control technique. A high-gain observer provides the robustness against model uncertainties to the proposed estimator. A sliding mode control technique helps the proposed estimator by reducing the side effect of adopting a high-gain observer such as peaking phenomenon and perturbation. The performance of the proposed estimator is verified by some simulation.

본 논문에서는 모델의 불확실성을 갖는 RC 배터리 모델의 State-of- Charge(SOC)를 추정하기 위한 강인한 고이득 관측기를 설계한다. 일반적으로 SOC를 추정하기 위해 사용하는 RC 배터리 모델은 실제 배터리 셀과 정확하게 일치하지 않고 거기에 따른 모델의 불확실성이 존재하게 된다. 이렇게 불확실성이 존재할 때 그 영향을 최소화하고 보다 정확한 SOC를 추정할 수 있는 강인한 관측기를 설계하는 것이 중요하다. 본 논문에서는 실제 배터리 셀과 RC 배터리 모델 사이에 모델 불확실성이 존재하더라도 정확한 SOC추정을 위하여 강인한 고이득 관측기를 설계한다. 하지만 이러한 강인한 고이득 관측기는 높은 이득으로 발생하는 튐 현상(peaking phenomenon)과 출력 측정오차에 민감하게 반응하여 발생하는 진동(perturbation)이 존재하는 단점이 있다. 그래서 이를 보완하기 위해 슬라이딩 모드 기법을 사용하여 강인한 고이득 관측기를 설계한다. 마지막으로 성능 검증을 위하여 선형 관측기, 고이득 관측기를 이용한 SOC 추정결과를 비교한다.

Keywords

References

  1. S. Piller, M. Perrin, A. Jossen, "Methods for state-of-charge determination and their applications." J. Power Sources, pp. 113-120, 2001.
  2. J.H. Aylor, B.W. Johnson, "A battery state-ofcharge indicator for electric wheelchairs." IEEE Trans. Ind. Electron, pp. 398-409, 1992.
  3. T.H. Liu, D.F. Chen, C.C. Fang, "Design and implementation of a battery charger with a state-of-charge estimator." Int. J. Electron, pp. 211-226, 2000
  4. Y. adrc, Y. zkazan, "Microcontroller-based on-line state-of-charge estimator for sealed lead-acid batteries." J. Power Sources, pp. 330-342, 2004.
  5. B.S. Bhangu, P. Bentley, "D.A. Stone, C.M. Bingham, Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles." IEEE Trans. Veh. Tech, pp. 783-794, 2005.
  6. H. He, R. Xiong, J. Fan, "Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach." Energies, pp. 582-598, 2011.
  7. X. Hu, F. Sun, Y. Zou, "Estimation of state of charge of a lithium-ion battery pack for electric vehicles using an adaptive luenberger observer." Energies, pp. 1586-1603, 2010.
  8. H. Chaoui, P. Sicard, "Accurate state of charge estimation for batteries using a reduced-order observer." IEEE Int.l Con, pp. 39-43, 2011.
  9. J. Ciasson, B. Vairamohan, "stimating the state of charge of a battery." IEEE Trans. Con. Sys. Technology, pp. 465-470, 2005.
  10. F. Zhang, G. Liu and L. Fang, "A battery state of charge estimation method using sliding mode observer." Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, Jun. 2008.
  11. F. Zhang and G. Liu, "Estimation of battery state of charge with $H_{\infty}$ observer: applied to a robot for inspecting power transmission lines." IEEE Trans. Ind. Electron, vol. 59, no 2, pp. 1086-1095, shenyang, China, Feb. 2012. https://doi.org/10.1109/TIE.2011.2159691
  12. K. Jang, G.-B. Chung, "A SOC Estimation using Kalman Filter for Lithium-Polymer Battery" The Trans. of Korean Inst. of Power Electronics, pp.222-229, 2012. https://doi.org/10.6113/TKPE.2012.17.3.222
  13. K. Wipke, ADVISOR 3.2 Documentation, NREL: Golden, CO, USA, 2001.
  14. J. J. E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
  15. H. J. Marquez, NONLINEAR CONTROL SYSTEMS, WILY, 2003.
  16. H.K. Khalil, Nonlinear Systems 3rd ed, Prentice Hall, 2002.
  17. C.-T. Chen, Linear System Theory and Design 3rd ed, Oxford University Press,1999.
  18. N. S. Nise, Control Systems Engineering, WILY, 2008.
  19. H.-S. Jung, MATLAB control system analysis and design, Ajin, 2008.
  20. K. Ogata, Modern Control Engineering, Scitech, 2002.
  21. S.-H. Yoo, "A Nonlinear Observer Design for Estimating State-of-Charge of Lithium Polymer Battery", J. of Korean Inst. of Intelligent Syst, vol.22, no.3, pp. 300-304, 2012 https://doi.org/10.5391/JKIIS.2012.22.3.300
  22. S.-H. Yoo, W Xuedong, "A Fuzzy $H_{\infty}$ Filter Design for State of Charge Estimation", J. of Korean Inst. of Intelligent Syst, vol.20, no.2, pp. 214-219, 2010 https://doi.org/10.5391/JKIIS.2010.20.2.214

Cited by

  1. Generation of Daily Load Curves for Performance Improvement of Power System Peak-Shaving vol.24, pp.2, 2014, https://doi.org/10.5391/JKIIS.2014.24.2.141