DOI QR코드

DOI QR Code

Adaptive Fault Accommodation Control for Flexible-Joint Robots

유연 관절 로봇의 적응 고장 수용 제어

  • Yoo, Sung Jin (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 유성진 (중앙대학교 전자전기공학부)
  • Received : 2012.12.09
  • Accepted : 2013.02.10
  • Published : 2013.02.25

Abstract

This paper proposes an adaptive fault accommodation control approach for flexible-joint (FJ) robots with multiple actuator faults. It is assumed that the value and occurrence time of multiple actuator faults are unknown. An adaptive fault accommodation control scheme with prescribed performance bounds, which characterize the convergence rate and maximum overshoot of tracking errors, is designed to accommodate the actuator faults. From the Lyapunov stability theorem, it is proved that all signals of the closed-loop system are semi-globally uniformly ultimately bounded and tracking errors are preserved within prescribed performance bounds regardless of actuator faults.

본 논문은 다수의 구동기 고장을 가진 유연 관절 로봇의 적응 고장 수용 제어기를 제안한다. 다수의 구동기 고장의 크기와 일어나는 시간은 알려지지 않는다고 가정한다. 구동기 고장을 수용하기 위해 추종 오차의 수렴율과 오버슈트의 최대치로 특성화된 미리 정의된 성능을 보장하는 유계 조건을 갖는 적응 고장 수용 제어기를 설계한다. 르아프노브 안정도 이론을 이용하여 페루트 시스템의 모든 신호가 준 전역적이고 균일하고 궁극적으로 유계됨을 증명하고 추종 오차가 미리 정의된 성능 유계에서 벗어나지 않음을 보인다.

Keywords

References

  1. M. L. Visinsky, J. R. Cavallaro, I. D. Walker, "Robotic fault detection and fault tolerance: a survey", Rel. Eng. Syst. Safety, vol. 46, no. 2, pp. 136-158, 1994.
  2. M. L Visinsky, J. R. Cavallaro, I. D. Walker, "Expert system framework for fault detection and fault tolerance in robotics", Comput. Electr. Eng., vol. 20, no. 5, pp. 421-435, 1994. https://doi.org/10.1016/0045-7906(94)90035-3
  3. S. N. Huang, K. K. Tan, "Fault detection, isolation, and accommodation control in robotic systems", IEEE Trans. Autom. Sci. Eng., vol. 5, no. 3, pp. 480-489, 2008. https://doi.org/10.1109/TASE.2008.917009
  4. A. A. Abouelsoud, "Robust regulator for flexible-joint robots using integrator backstepping", J . Intell. Robot. Syst., vol. 22, no. 1, pp. 23-38, 1998. https://doi.org/10.1023/A:1007947416837
  5. S. Nicosia, P. Tomei, "A new approach to control elastic joint robots with application to adaptive control", Proc. IEEE Conf. on Decision and Control, pp. 343-347, 1991.
  6. M. M. Bridges, D. M. Dawson, C. T. Abdallah, "Control of rigid-link flexible-joint robots: a survey of backstepping approaches", J . Robot. Syst., vol. 12, no. 3, pp. 199-216, 1995. https://doi.org/10.1002/rob.4620120305
  7. D. Swaroop, J. K. Hedrick, P. P. Yip, J. C. Gerdes, "Dynamic surface control for a class of nonlinear systems," IEEE Transactions on Automatic Control, vol. 45 no. 10, pp. 1893-1899, 2000. https://doi.org/10.1109/TAC.2000.880994
  8. S. J. Yoo, J. B. Park, and Y. H. Choi "Adaptive output feedback control of flexible-joint robots using neural networks: dynamic surface design approach," IEEE Trans. Neural Networks, vol. 19, no. 10, pp. 1712-1726, 2008. https://doi.org/10.1109/TNN.2008.2001266
  9. C. P. Bechlioulis, and G. A. Rovithakis, "Adaptive control with guaranteed transient and steady state tracking error bounds for strict feedback systems", Automatica, vol. 45, no. 2, pp. 532- 538, 2009. https://doi.org/10.1016/j.automatica.2008.08.012