DOI QR코드

DOI QR Code

11 wt% 크롬이 함유된 Ti 첨가 페라이트스테인리스강의 입계부식에 미치는 규소의 영향

Effect of Silicon on Intergranular Corrosion Resistance of Ti-stabilized 11 wt% Cr Ferritic Stainless Steels

  • 현영민 (홍익대학교 재료공학부) ;
  • 김희산 (홍익대학교 재료공학부)
  • Hyun, Youngmin (School of Mat. Sci. and Eng., Hongik University) ;
  • Kim, Heesan (School of Mat. Sci. and Eng., Hongik University)
  • 투고 : 2013.10.25
  • 심사 : 2013.12.20
  • 발행 : 2013.12.31

초록

Ti-stabilized 11 wt% Cr ferritic stainless steels (FSSs) for automotive exhaust systems have been experienced intergranular corrosion (IC) in some heat-affected zone (HAZ). The effects of sensitizing heat-treatment and silicon on IC were studied. Time-Temperature-Sensitization (TTS) curves showed that sensitization to IC was observed at the steels heat-treated at the temperature lower than $650^{\circ}C$ and that silicon improved IC resistance. The sensitization was explained by chromium depletion theory, where chromium is depleted by precipitation of chromium carbide during sensitizing heat-treatment. It was confirmed with the results from the analysis of precipitates as well as the thermodynamical prediction of stable phases. In addition, the role of silicon on IC was explained with the stabilization of grain boundary. In other words, silicon promoted the formation of the grain boundaries with low energy where precipitation was suppressed and consequently, the formation of Cr-depleted zone was retarded. The effect of silicon on the formation of grain boundaries with low energy was proved by the analysis of coincidence site lattice (CSL) grain boundary, which is a typical grain boundary with low energy.

키워드

참고문헌

  1. T. Utsunomiya and T. Adachi, Nisshin Steel Tech. Rep., 68, 49 (1993).
  2. E. Sato and T. Tanoue, Nippon steel tech. Rep., 64, 13 (1995).
  3. T. Ujiro, M. Kitazawa, and S. Satoh, Zairy & omacr, 45, 1192 (1996).
  4. A. Miyazaki, J. Hirasawa, and S. Satoh, Kawasaki steel Tech. Rep., 43, 21 (2000).
  5. D. Kim and H. Kim, J. Kor. Met. & Mater., 46, 652 (2008).
  6. J. K. L. Lai, K. H. Lo, and C. H. Shek, Stainless Steels: An introduction and their recent developments, p.16, Bentham Science Publishers (2012).
  7. T. M. Divine and A. M. Ritter, Metall. Trans. A 14A, 1721 (1983).
  8. J.-K. Kim, B.-J. Lee, and B.-H. Lee, Y.-H. Kim, and K.-Y. Kim, Scripta Mater., 61, 1133 (2009). https://doi.org/10.1016/j.scriptamat.2009.08.045
  9. R. A. Mulford, E. L. Hall, and C. L. Briant, Corrosion, 39, 32 (1983).
  10. L. P. Lozovatskaya and L. I. Grishina, Protect. Met., 29, 462 (1993).
  11. M. Kumar, W. E. King, and A. J. Schwartz, Acta Mater., 48, 2081 (2000). https://doi.org/10.1016/S1359-6454(00)00045-8
  12. M. Shimada, H. Kokawa, Z. J. Wang, Y. S. Sato, and I. Karibe, Acta. Mater., 50, 2331 (2002). https://doi.org/10.1016/S1359-6454(02)00064-2
  13. H. Y. Bi, H. Kokawa, Z. J. Wang, M. Shimada, and Y. S. Sato, Scripta Mater., 49, 219 (2003). https://doi.org/10.1016/S1359-6462(03)00261-6
  14. E. A. Trillo and L. E. Murr, J. Mater. Sci., 33, 1263 (1998). https://doi.org/10.1023/A:1004390029071
  15. E. A. Trillo and L .E. Murr, Acta Materialia, 47, 235 (1999).
  16. H. Kokawa, M. Shimada, and Y. S. Sato, JOM, 52, 34 (2000).
  17. A. Camus, A. Desestret, M. Froment, and P. Guiraldeng, NASA-TT-F-16048 Washington D.C. (1975).
  18. J.-K. Kim, Y.-H. Kim, J.-S. Lee, and K.-Y. Kim, Corros. Sci., 52, 1847 (2010). https://doi.org/10.1016/j.corsci.2010.01.037
  19. J. D. Fritz and I. A. Franson, Mater. Perform., 16, 57 (1997).
  20. T. M. Divine, A. M. Ritter, and B. J. Brummond, Metall. Trans. A 12A, 2063 (1981).
  21. R. Beltran, J. G. Maldonada, L. E. Murr, and W. W. Fisher, Acta Mater., 45, 4351 (1997). https://doi.org/10.1016/S1359-6454(97)00106-7
  22. E. Almanza and L .E. Murr, J. Mater. Sci., 35, 3181 (2000). https://doi.org/10.1023/A:1004886213848
  23. J. K. L. Lai, K. H. Lo, and C. H. Shek, Stainless Steels: An introduction and their recent developments, p.57, Bentham Science Publishers (2012).
  24. C. S. Brossia, and K. L. Martion, Corrosion 98 no 542, NACE, TX, Houstion (1998).

피인용 문헌

  1. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment vol.14, pp.6, 2015, https://doi.org/10.14773/cst.2015.14.6.313
  2. Contradictory Results from Single Loop Electrochemical Potentiokinetic Reactivation Test and Oxalic Acid Test for Intergranular Corrosion in 304L Stainless Steels Attributed to Si Grain-Boundary Segre vol.166, pp.13, 2013, https://doi.org/10.1149/2.1361912jes