DOI QR코드

DOI QR Code

Determining Factors for the Protectiveness of the Passive Film of FeCrN Stainless Steel Formed in Sulfuric Acid Solutions

  • Ha, Heon-Young (Advanced Metallic Materials Division, Korea Institute of Materials Science) ;
  • Lee, Tae-Ho (Advanced Metallic Materials Division, Korea Institute of Materials Science)
  • Received : 2013.07.01
  • Accepted : 2013.07.16
  • Published : 2013.08.31

Abstract

In NaCl solutions acidified with $H_2SO_4$, Fe20Cr1.1N alloy showed enhanced pitting corrosion resistance than Fe20Cr alloy. An XPS analysis revealed that the passive film of Fe20Cr1.1N alloy contained higher cationfraction of Cr than that of Fe20Cr alloy, and nitrogen was incorporated into the film. In addition, it was found that the passive film of Fe20Cr1.1N alloy was thinner and had higher oxygen vacancy density than that of Fe20Cr alloy. Based on these observations, it was concluded that the chemical composition was the determining factor for the protectiveness of the passive film of Fe20Cr based alloy in dilute $H_2SO_4$ solution.

Keywords

References

  1. P. R. Levey and A. van Bennekom, Corrosion, 51, 911 (1995). https://doi.org/10.5006/1.3293567
  2. M. Sumita, T. Hanawa and S. H. Teoh, Mat. Sci. Eng. C-Mater., 24, 753 (2004). https://doi.org/10.1016/j.msec.2004.08.030
  3. H. J. Grabke, ISIJ Int., 36, 777 (1996). https://doi.org/10.2355/isijinternational.36.777
  4. P. J. Uggowitzer, R. Magdowski and M. O. Speidel, ISIJ Int., 36, 901 (1996). https://doi.org/10.2355/isijinternational.36.901
  5. J. W. Simmons, Mat. Sci. Eng. A-Struct., 207, 159 (1996). https://doi.org/10.1016/0921-5093(95)09991-3
  6. J. Menzel, W. Kirschner and G. Stein, ISIJ Int., 36, 893 (1996). https://doi.org/10.2355/isijinternational.36.893
  7. R. F. A. J.-Pettersson, Corros. Sci., 41, 1639 (1999). https://doi.org/10.1016/S0010-938X(99)00013-X
  8. K. H. Lo, C. H. Shek and J. K. L. Lai, Mat. Sci. Eng. R, 65, 39 (2009). https://doi.org/10.1016/j.mser.2009.03.001
  9. I. Olefjord and L. Wegrelius, Corros. Sci., 38, 1203 (1996). https://doi.org/10.1016/0010-938X(96)00018-2
  10. A. S. Vanini, J.-P.Audouard and P. Marcus, Corros. Sci., 36, 1825 (1994). https://doi.org/10.1016/0010-938X(94)90021-3
  11. H. Ha, H. Jang and H. Kwon, Corros. Sci., 51, 48 (2009). https://doi.org/10.1016/j.corsci.2008.10.017
  12. M. K. Lei and X. M. Zhu, J. Electrochem. Soc., 152, B291 (2005). https://doi.org/10.1149/1.1939245
  13. R. D. Willenbruch, C. R. Clayton, M. Oversluizen, D. Kim and Y. Lu, Corros. Sci., 31, 179 (1990). https://doi.org/10.1016/0010-938X(90)90106-F
  14. C.-O. A. Olsson, Corros. Sci., 37, 467 (1995). https://doi.org/10.1016/0010-938X(94)00148-Y
  15. Y. Fu, X. Wu, E.-H. Han, W. Ke, K. Yang and Z. Jiang, Electrochim. Acta, 54, 4005 (2009). https://doi.org/10.1016/j.electacta.2009.02.024
  16. M. Metikos-Hukovic, R. Babic, Z. Grubac, Z. Petrovic and N. Lajci, Corros. Sci., 53, 2176 (2011). https://doi.org/10.1016/j.corsci.2011.02.039
  17. S. Ningshen, U. K. Mudali, V. K. Mittal and H. S. Khatak, Corros. Sci., 49, 481 (2007). https://doi.org/10.1016/j.corsci.2006.05.041
  18. S. Ahn and H. Kwon, J. Electroanal. Chem., 579, 311 (2005). https://doi.org/10.1016/j.jelechem.2005.03.003
  19. K. N. Goswami and R. W. Staehle, Electrochim. Acta, 16, 1895 (1971). https://doi.org/10.1016/0013-4686(71)85145-9
  20. H.-Y. Ha and H.-S. Kwon, J. Electrochem. Soc., 159, C416 (2012). https://doi.org/10.1149/2.042209jes
  21. H.-Y. Ha, T.-H. Lee and S.-J. Kim, Electrochim. Acta, 80, 432 (2012). https://doi.org/10.1016/j.electacta.2012.07.056
  22. T. Massoud, V. Maurice, L. H. Klein and P. Marcus, J. Electrochem. Soc., 160, C232 (2013). https://doi.org/10.1149/2.067306jes
  23. H. Luo, X. G. Li, C. F. Dong and K. Xiao, Surf. Interface Anal., 45, 793 (2013). https://doi.org/10.1002/sia.5157
  24. A. Kocijan, C. Donik and M. Jenko, Corros. Sci., 49, 2083 (2007). https://doi.org/10.1016/j.corsci.2006.11.001
  25. C. M. Abreu, M. J. Cristobal, P. Merino, X. R. Novoa, G. Pena and M. C. Perez, Electrochim. Acta, 53, 6000 (2008). https://doi.org/10.1016/j.electacta.2008.03.064
  26. N. Sato, K. Kudo and T. Noda, Electrochim. Acta, 16, 1909 (1971). https://doi.org/10.1016/0013-4686(71)85146-0
  27. N. Sato, K. Kudo and R. Nishimura, J. Electrochem. Soc., 123, 1419 (1976). https://doi.org/10.1149/1.2132612
  28. A. M. P. Simoes, M. F. S. Ferreira, B. Rondot and M. Da Cunha Belo, J. Electrochem. Soc., 137, 82 (1990). https://doi.org/10.1149/1.2086444
  29. E. Cho, H. Kwon and D. D Macdonald, Electrochim. Acta, 47, 1661 (2002). https://doi.org/10.1016/S0013-4686(01)00887-8
  30. S. Ahn, H. Kwon and D. D. Macdonald, J. Electrochem. Soc., 152, B482 (2005). https://doi.org/10.1149/1.2048247
  31. N. Li, Y. Li, S. Wang and F. Wang, Electrochim. Acta, 52, 760 (2006). https://doi.org/10.1016/j.electacta.2006.06.023
  32. A. Shahryari, S. Omanovic and J. Z. Szpunar, Mat. Sci. Eng. C-Mater., 28, 94 (2008). https://doi.org/10.1016/j.msec.2007.09.002

Cited by

  1. Simultaneous Investigation of the Effect of Advanced Thermomechanical Treatment and Repetitive Cyclic Voltammetry on the Electrochemical Behavior of AISI 430 Ferritic Stainless Steel vol.26, pp.2, 2017, https://doi.org/10.1007/s11665-017-2509-x
  2. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/4050175
  3. The effect of surface modification on the corrosion protection ability of the passive films of sensitized UNS S31803 duplex stainless steel vol.54, pp.2, 2019, https://doi.org/10.1080/1478422X.2018.1556865
  4. Effect of Solution Treatment on the Microstructure and Performance of S31254 Super Austenitic Stainless Steel vol.90, pp.8, 2013, https://doi.org/10.1002/srin.201900041