DOI QR코드

DOI QR Code

Miscanthus EST-originated Transcription Factor WRKY Expression in Response to Low Temperature in Warm-season Turfgrasses

억새 EST 정보 유래 전사요소 WRKY의 난지형 잔디의 저온 발현 반응성

  • Received : 2013.11.09
  • Accepted : 2013.12.09
  • Published : 2013.12.31

Abstract

Whole genome transcriptomes from Miscanthus species were sequenced and analyzed, which provided 50 different types of transcription factor (TF) involving various developmental processes or environmental stresses. Among the explored TF, WRKY gene family was the major type and one of the WRKY genes, MSIR7180_WRKY4, induced under low temperature environment was selected to investigate how the Miscanthus-originated MSIR7180_WRKY4 TF responds when exposed to low temperature in four warm-season turfgrasses (Z. matrella 'Semil', bermudagrass, St. Augustinegrass, and seashore paspalum). The MSIR7180_WRKY4 was expressed higher during low temperature period in Bermudagrass, but the expression was enhanced in St. Augustinegrass. In contrast, the gene in 'Semil' cultivar was barely expressed and relatively less expressed, but repressed gradually in seashore paspalum, which seems to allow two turfgrasses stay-green longer in the fall season. The results indicate that bermudagrass and St. Augustinegrass adapt to low temperature quickly, but relative tolerance to low or cold temperature at the molecular level needs to be further investigated at different physiological stages and the corresponding genes systematically.

국내에 자생하는 참억새(M. sinensis)와 물억새(M. sacchariflorus)의 잎과 지하경 조직 EST로부터 유전자의 전사를 조절하는 전사요소 탐색하여 저온에 반응하는 유전자를 분리하고 난지형 잔디에서 저온 반응의 차이를 알아보기 위하여 본 연구를 실시하였다. 분석 결과 탐색된 전사조절 요소의 종류는 총 50 종류로 나타났고, 그 중 WRKY family에 속하는 EST 절편이 226개로 가장 많이 발견되었다(9.6%). 그 중 억새 WRKY family를 기능이 밝혀진 다른 작물의 WRKY 유전자들과 비교 검색한 결과 약 80개의 억새 isotig가 저온에 반응하여 발현이 유도 또는 억제되는 것으로 나타났다. 그 중 애기장대와 벼에서 저온 처리 후 발현이 증가되는 것으로 알려진 억새의 MSIR7180_ WRKY4 유전자를 대상으로 그 발현양상을 조사한 결과 버뮤다그래스는 비교구에서와 비슷하게 처리기간 동안 높은 유전자의 발현을 보였고, 금잔디(Z. matrella)간의 교배를 통해 얻어진 세밀 품종은 처리기간 내내 발현이 미약하였다. St. Augustinegrass는 3일 동안은 비교구와 큰 차이가 없다가 5일째부터 발현이 증가하였고, Seashore paspalum은 처리 초기에 발현이 높다가 처리가 진행되면서 약해지는 경향을 나타냈다. 이 결과로 미루어 볼 때 버뮤다그래스와 St. Augustine grass는 저온 반응성이 신속하여 휴면을 준비하지만 금잔디와 Seashore paspalum은 휴면 돌입이 늦어 녹색이 상대적으로 늦게까지 유지되는 것으로 판단되어 저온 적응을 위한 또 다른 환경요인의 작용이 있을 것으로 여겨진다. 녹색 기간이 길고 내한성이 높은 품종의 개발을 위해서는 더 많은 유전자의 종합적인 고찰과 판단이 요구된다.

Keywords

References

  1. Cai, H., Tian, S., Liu, C. and Dong, H. 2011. Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.). Gene 485:146-152. https://doi.org/10.1016/j.gene.2011.06.026
  2. Chang, N.K. and Kim, H.K. 1986. Physiological and ecological studies on prolongation of the green period in Korean lawn. J. Kor. Grassl. Sci. 6:131-137. (In Korean)
  3. Chen, L., Song, Y., Li, S., Zhang, L., Zou, C. and Yu, D. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta 1819:120-128. https://doi.org/10.1016/j.bbagrm.2011.09.002
  4. Choi, J.S. and Yang, G.M. 2013. Development of new hybrid cultivar 'Semil' in zoysiagrass. Weed Turf. Sci. 2:198-201. (In Korean) https://doi.org/10.5660/WTS.2013.2.2.198
  5. Dubos, C., Stracke, R., Grotewold, E., Weisshaar, B., Martin, C. and Lepiniec, L. 2010. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15:573-581. https://doi.org/10.1016/j.tplants.2010.06.005
  6. Duncan, R.R. and Carrow, R.N. 1999. Turfgrass molecular genetic improvement for abiotic/edaphic stress resistance. Adv. Agron. 67:233-305. https://doi.org/10.1016/S0065-2113(08)60516-7
  7. Duncan, R.R. and Carrow, R.N. 2000. Seashore paspalum: The environmental turfgrass. John Wiley & Sons, Inc, NJ, USA
  8. Gao, M.J., Allard, G., Byass, L., Flanagan, A.M. and Singh, J. 2002. Regulation and characterization of four CBF transcription factors from Brassica napus. Plant Mol. Biol. 49:459-471. https://doi.org/10.1023/A:1015570308704
  9. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., et al., 2002. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7:106-111. https://doi.org/10.1016/S1360-1385(01)02223-3
  10. Jiang, H., Li, M., Liang, N., Yan, H., We, Y., et al. 2007. Molecular cloning and function analysis of the stay green gene in rice. Plant J. 52:197-209. https://doi.org/10.1111/j.1365-313X.2007.03221.x
  11. Jin, J., Zhang, H., Kong, L., Gao, G. and Luo, J. 2013. Plant TF DB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucl. Acids Res. first published online October 29, 2013 doi:10.1093/nar/gkt1016.
  12. Kim, C.S., Lee, T.H., Jeon, Y.J., Chung, S.J., Paterson, A.H., et al. 2013. Whole genome scanning of transcriptomes from two Miscanthus species reveals their functional specificity and evolutionary relationships. (in preparation).
  13. Kusaba, M., Tanaka, A. and Tanaka, R. 2013. Stay-green plants:what do they tell us about the molecular mechanism of leaf senescence. Photosynth. Res. DOI 10.1007/s11120-013-9862-x (e-online published ahead of print).
  14. Latchman, D.S. 1997. Transcription factors: an overview. Int. J. Biochem. Cell Biol. 29:1305-12. https://doi.org/10.1016/S1357-2725(97)00085-X
  15. Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., et al. 2004. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 45:1042-1052. https://doi.org/10.1093/pcp/pch118
  16. Rushton, P.J., Somssich, I.E., Ringler, P. and Shen, Q.J. 2010. WRKY transcription factors. Trends Plant Sci. 15:247-258. https://doi.org/10.1016/j.tplants.2010.02.006
  17. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
  18. Takuhara, Y., Kobayashi, M. and Suzuki, S. 2011. Lowtemperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. J. Plant Physiol. 168:967-975. https://doi.org/10.1016/j.jplph.2010.11.008
  19. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  20. Tang, M., Lu, S., Jing, Y., Zhou, X., Sun, J. and Shen, S. 2005. Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiol. Biochem. 43:233-239. https://doi.org/10.1016/j.plaphy.2005.01.015
  21. Thomashow, M.F. 2010. Molecular basis of plant cold acclimation: Insights gained from studying the CBF cold response pathway. Plant Physiol. 154:571-577. https://doi.org/10.1104/pp.110.161794
  22. Wang, X., Kuang, T. and He, Y. 2010. Conservation between higher plants and the moss Physcomitrella patens in response to the phytohormone abscisic acid: a proteomics analysis. BMC Plant Biol.10:192. https://doi.org/10.1186/1471-2229-10-192