References
- J. C. Butcher, On Runge-Kutta processes of high order, Journal of the Australian Mathematical Society, 4(1964), 179-194. https://doi.org/10.1017/S1446788700023387
- J. C. Butcher Numerical Methods for Ordinary Differential Equations, New York: John Wiley and Sons(2003).
- G. Dahlquist, A special stability problem for linear multistep methods, BIT 3(1963), 27-43. https://doi.org/10.1007/BF01963532
- P. J. Davis, P. Rabinowitz Methods of Numerical Integration, Academic Press, New York(1975).
- E. Hairer, S.P Norsett, G. Wanner, Solving ordinary differential equations I, nonstiff problems, Springer, Berlin(1993).
- E. Hairer, G.Wanner, Solving ordinary differential equations. II Stiff and Differential- Algebraic Problems, Springer Series in Computational Mathematics, Springer(1996).
- A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: R. S. Stepleman et al., eds, Scientific Computing(North-Holland, Amsterdam, 1983), 55-64
- F. Iavernaro, F. Mazzia, Solving ordinary differential equations by generalized Adams methods: properties and implementation techniques, Appl. Numer. Math., 28(1998), 107-126. https://doi.org/10.1016/S0168-9274(98)00039-7
- F. Iavernaro, F. Mazzia, Block-boundary value methods for the solution of ordinary differential equations, SIAM J. Sci. Comput., 21(1999), 323-339. https://doi.org/10.1137/S1064827597325785
- L. G. Ixaru, Exponentially fitted variable two-step BDF algorithm for first order ODEs, Comput. Phys. Comm., 150(2003), 116-128. https://doi.org/10.1016/S0010-4655(02)00676-8
- P. Kim, X. Piao and S. Kim, An error corrected Euler method for solving stiff problems based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230. https://doi.org/10.1137/100808691
- S. D. Kim, X. Piao, D. H. Kim, P. Kim Convergence on error correction methods for solving initial value problems, J. Comput. Appl. Math., 236(2012), 4448-4461. https://doi.org/10.1016/j.cam.2012.04.015
- J. Kwon, S. D. Kim, X. Piao, P. Kim, A Chebyshev collocation method for a stiff initial value problem and its stability, Kyungpook Math. J., 51(2011), 435-456. https://doi.org/10.5666/KMJ.2011.51.4.435
- W. Liniger, R. A. Willoughby, Efficient integration methods for stiff systems of ordinary differential equations, SIAM J. Numer. Anal., 7(1970), 47-66. https://doi.org/10.1137/0707002
- A. Prothero, A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. Comput., 28(1974), 145-162. https://doi.org/10.1090/S0025-5718-1974-0331793-2
- H. Ramos, R. Garcia-Rubio, Analysis ofa Chebyshev-based backward differentiation formulae and relation with Runge-Kutta collocation methods, Int. J. Comput. Math., 88(2011), 555-577. https://doi.org/10.1080/00207161003631877
- H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations, J. Comp. Appl. Numer., 204(2007), 124-136. https://doi.org/10.1016/j.cam.2006.04.033
- H. Ramos, A non-standard explicit integration scheme for initial-value problems, Appl. Math. Comp., 189(2007), 710-718. https://doi.org/10.1016/j.amc.2006.11.134
- H. H. Rosenbrock, Some general implicit processes for the numerical solution of differential equations, Computer J., 5(1962/63), 329-330.
- L. F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput., 18(1997), 1-22. https://doi.org/10.1137/S1064827594276424
- M.M. Stabrowski, An efficient algorithm for solving stiff ordinary differential equations, Simul. Pract. Theory 5(1997), 333-344. https://doi.org/10.1016/S0928-4869(96)00011-0
- J. G. Verwer, E. J. Spee, J. G. Blom, W.H. Hundsdorfer, A second-order Rosenbrock method applied to photochemical dispersion problems, SIAM J. Sci. Comput., 20(1999), 1456-1480. https://doi.org/10.1137/S1064827597326651
- J. Vigo-Aguiar, H. Ramos, A family of A-stable Runge-Kutta collocation methods of higher order for initial-value problems, IMA J. Numer. Anal., 27(2007), 798-817. https://doi.org/10.1093/imanum/drl040
- X. Y. Wu, J. L. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput., 123(2001), 141-153. https://doi.org/10.1016/S0096-3003(00)00010-2
Cited by
- Error Control Strategy in Error Correction Methods vol.55, pp.2, 2015, https://doi.org/10.5666/KMJ.2015.55.2.301
- An iteration free backward semi-Lagrangian scheme for solving incompressible Navier–Stokes equations vol.283, 2015, https://doi.org/10.1016/j.jcp.2014.11.040
- An error embedded method based on generalized Chebyshev polynomials vol.306, 2016, https://doi.org/10.1016/j.jcp.2015.11.021
- An Error Embedded Runge-Kutta Method for Initial Value Problems vol.56, pp.2, 2016, https://doi.org/10.5666/KMJ.2016.56.2.311
- A new approach to estimating a numerical solution in the error embedded correction framework vol.2018, pp.1, 2018, https://doi.org/10.1186/s13662-018-1619-6