
KYUNGPOOK Math. J. 53(2013), 573-591

http://dx.doi.org/10.5666/KMJ.2013.53.4.573

Simple ECEM Algorithms Using Function Values Only

Philsu Kim and Sang Dong Kim∗

Department of Mathematics, Kyungpook National University, Daegu, 702-701, Ko-
rea
e-mail : kimps@knu.ac.kr and skim@knu.ac.kr

Eunjung Lee
Department of Computational Science and Engineering, Yonsei University, Korea
e-mail : enujunglee@yonsei.ac.kr

Abstract. In this paper, we improve the error corrected Euler method(ECEM) intro-

duced in [11] by evaluating function values only at local nodes in each time interval. As a

result, one can avoid computations of Jacobian matrices on each time interval so that the

algorithms become simpler to implement in solving various class of time dependent differ-

ential equations numerically. The proposed ECEM formula resembles to the Runge-Kutta

method in its representations but both methods have different characteristic properties.

1. Introduction

Among well known many numerical methods for solving initial value prob-
lems(see [5, 6], [7]-[10] and [14]-[24], for example), recently the ECEM (error cor-
rected Euler method) was reported in [11] to solve stiff initial value problems by
aiming at two main goals; to avoid iteration steps for nonlinear discrete systems and
to provide a good stability as implicit methods possess. The basic concept of ECEM
algorithm is to obtain the next approximation by the forward Euler approximation
plus a local correction term in each time interval.

The original ECEM algorithm introduced in [11] requires to compute the local
Jacobian matrices and to solve local linear systems to get correction terms on each
time steps. Evaluation of the Jabobian of the given function is a very expensive
process and if one uses an approximation for Jacobian evaluation, again it may
result in loosing some information. In this paper, we propose a rewritten ECEM
algorithm which only uses the previous time step’s data and function evaluations at

* Corresponding Author.
Received November 5, 2013; accepted December 4, 2013.
2010 Mathematics Subject Classification: 65M55, 65N30, 49J20, 49K20.
Key words and phrases: Runge-Kutta method, Butcher’s table, Error Corrected Euler
Method.
This research was supported by Kyungpook National University Research Fund, 2012.

573

574 P. Kim, E. Lee and S. D. Kim

intermediate stages on each time step. The basic idea is the same with the original
ECEM algorithm in [11] but we rearranged the algorithm and found a formula so
that the Jabobian computation is not needed.

The proposed ECEM method can be considered as a one-step multistage linear
method and the formula is similar to the well-known Rung-Kutta (RK) method.
The explicit RK method is one of the most widely used numerical scheme in solving
ordinary differential equations because it is very easy to implement and can provide
a faster convergence (see [1], [2], [5], [6]). However, it is generally known that explicit
RK methods are not suitable for solving stiff equations since their absolute stability
region is small. On the other hand, the implicit RK method is unconditional stable
while it needs some extra iteration process.

Although ECEM and RK have similar formulations and share the same order
of convergence, they actually have several major differences as follows:

• To generate the next stage approximation, ECEM only uses K0 = f(tm, ym)
and function evaluations at local Chebyshev-Gauss-Lobatto-points in each
time step while RK requires to use all previous intermediate information at
any local nodes in each time step which demands a lot of storage specially in
dealing with higher-dimensional problems.

• The weights (the coefficients) of ECEM formula depend on the function f(t, y)
while the ones of RK are constants. Hence, computing weights in ECEM
needs an extra work than RK does. The weights by a numerical quadrature
explained for ECEM are different from the usual CGL quadrature weights.

• On the stability regions of two methods for Dahlquist’s test problem dy
dt = λy,

the ECEM possesses A(α) stability and almost L stability even if it is an
explicit time stepping method while the explicit RK methods possess limited
stability regions. The stability regions of ECEM almost coincides with the
implicit RK methods.

This paper is organized as follows. In section 2, the general ECEM algorithm is
reviewed and stated with only function values. Further, it is shown that ECEM
can be explained by a numerical quadrature using CGL nodes. In section 3, the 2−
stage ECEM2 algorithm is stated and its stability analysis for dy

dt = λ(y− g)+ dg
dt is

compared with the explicit RK2 method. In the following two sections 4 and 5, the
p = 3, 4 stage ECEM algorithms are described in terms of function evaluations fully
with their derivations. The weights for ECEM are given completely. In section 6,
the explicit RK methods and ECEM algorithms are compared. In final section, we
derive some conclusions and further research topics.

2. General ECEM Algorithm

The time discretization technique ECEM was first introduced in [11]. We will
review the necessary notations and definitions to propose a new ECEM formula

Simple ECEM Algorithm 575

in terms of function evaluations only. Therefore, an interested reader should refer
to [11]. The derivation of ECEM is based on the Euler Polygon and the local
Chebyshev-Gauss-Lobatto (CGL) collocation points aiming at solving stiff initial
value problems (IVP) such that

(2.1)
dy

dt
= f(t, y(t)), y(t0) = y0.

Let sj = − cos πj
p , 0 ≤ j ≤ p be the CGL points in [−1, 1]. The Euler polygon on

the interval [tm, tm+1] for a given approximation ym at tm is known as

(2.2) y(t) = ym + (t− tm)f(tm, ym).

Using the above Euler polygon y(t), we define

(2.3) φ(s) =
1

τ2

[
f(ts, y(ts) + τ2)− f(ts, y(ts))

]
,

where τ = tm+1 − tm and

(2.4) ts = tm +
1 + s

2
τ, for s ∈ [−1, 1].

Note that the finite difference approximation (2.3) for fy does not violate the con-
vergence of ECEM. Let us define the matrix A and the vector F as

(2.5) A :=
(
ajk

)
j,k=1,··· ,p

, p ≤ 4

with

(2.6) ajk =
dlk
dx

(sj)−
τ

2
φ(sj)δjk, j, k = 1, · · · , p

and

(2.7) F := [F (ts1), · · · , F (tsp)]

with

(2.8) F (tsk) = f(tsk , y(tsk))− f(tm, ym), k = 1, 2, · · · , p.

With the last component β̂ of a solution d to

(2.9) Ad =
τ

2
F,

the p-th order ECEM (p = 2, 3, 4) is known as

(2.10) ym+1 = ym + τf(tm, ym) + β̂.

576 P. Kim, E. Lee and S. D. Kim

This algorithm (2.10) now can be rewritten in terms of function values only with
appropriate weights which actually are obtained by the last row of the matrix A−1.
We address this observation in the following theorem.

Theorem 2.1. Let (a1 a2 a3 a4) be the last row vector of the matrix A−1. Then
ECEMk (k = 2, 3, 4) can be written as

ym+1 = ym + a0f(tm, ym) +
τ

2

4∑
j=1

ajf

(
tm +

1 + sj
2

τ, ym +
1 + sj

2
τf(tm, ym)

)

= ym + a0f(tm, ym) +
τ

2

4∑
j=1

ajf
(
tsj , y(tsj)

)
,(2.11)

where a0 satisfies

(2.12) a0 = τ − τ

2
(a1 + a2 + a3 + a4).

Note that a3 = a4 = 0, sj = − cos πj
2 , j = 1, 2 for ECEM2, a4 = 0, sj =

− cos πj
3 , j = 1, 2, 3 for ECEM3 and sj = − cos πj

4 , j = 1, 2, 3, 4 for ECEM4.

Proof. Note that from (2.9), the last component β̂ of d can be written as

(2.13) β̂ =
τ

2

(
a1F (ts1) + a2F (ts2) + a3F (ts3) + a4F (tsN)

)
where the vector [a1 a2, a3, a4] is the last row of the matrix A−1. Therefore, one
may have the conclusion by combining (2.13) with (2.10) and (2.8). 2

The convergence of ECEM algorithms with (2.3) is proven in [11]. For reader’s
convenience, it is stated in the next theorem.

Theorem 2.2. Let y(t) be the exact solution to (2.1) and {ym} be an approximation
generated by (2.10) at time t = tm. Under the assumption of supt,y ∥fy(t, y(t))∥ <
∞, the actual error em = y(tm)− ym satisfies for sufficiently small time size τ

(2.14) em = O
((1 + Cτ)3m − 1

(1 + Cτ)3 − 1
τmin{n+1,5}

)
, m ≥ 0.

where the positive constant C is a generic constant independent of time size τ , time
step m and the final time T , and n is chosen as 2, 3 or 4 which is the order N = n
of matrix (2.5).

Proof. See (4.13) in Theorem 4.4 of [11]. 2

Under the assumption of Theorem 2.2 with n = 2, 3, 4, it follows that from

Simple ECEM Algorithm 577

(2.1), (2.14) and (2.11)∫ tm+1

tm

f(t, y) dt =

∫ tm+1

tm

y′(t) dt

= y(tm+1)− y(tm)

= y(tm+1)− y(tm) + em+1 − em

= ym+1 − ym +O
(
τmin{n+1,5}

)
= a0f(tm, ym) +

τ

2

4∑
j=1

ajf
(
tsj , y(tsj)

)
+O

(
τmin{n+1,5}

)
.(2.15)

From this (2.15), it is evident that the ECEM algorithms can be explained from
numerical quadrature of (2.1). But the weights a0 and ai

2 τ (i = 2, · · · , n) should be
calculated from the function of f(t, y) with the CGL nodes. This numerical quadra-
ture is distinguished from the well known CGL quadrature rule (see [4]) which can
be used for RK methods(see Butcher’s table in [5], [6] for example). Now we are
ready to propose a new formula for ECEM algorithm. They are explicitly presented
in the following three sections.

3. Second-order ECEM2 Algorithm

In the section, we rewrite the ECEM2 algorithm for easy and convenient imple-
mentations using only function values of f . ECEM2 has a second order convergence.
The CGL points are taken as s0 = −1, s1 = 0, s2 = 1 and the Chebyshev Lagrange
interpolation quadratic polynomials using these three CGL points are

(3.1) l0(x) =
1

2
x(x− 1), l1(x) = −x2 + 1, l2(x) =

1

2
x(x+ 1).

The matrix A in (2.5) becomes

(3.2) A =

[
− τ

2φ(s1)
1
2

−2 3
2 − τ

2φ(s2)

]
where

φ(s1) =
1

τ2

[
f
(
tm +

τ

2
, ym +

τ

2
f(tm, ym) + τ2

)
− f

(
tm +

τ

2
, ym +

τ

2
f(tm, ym)

)]
φ(s2) =

1

τ2

[
f(tm+1, ym + τf(tm, ym) + τ2)− f(tm+1, ym + τf(tm, ym))

]
and the vector F in (2.7) becomes

F (ts1) = f(tm +
τ

2
, ym +

τ

2
f(tm, ym))− f(tm, ym),(3.3)

F (ts2) = f(tm+1, ym + τf(tm, ym))− f(tm, ym).

578 P. Kim, E. Lee and S. D. Kim

Then, solving (2.9) for d using (3.2) and (3.3), one may get

(3.4) d =
τ

2

1

det(A)

(32 − τ
2φ(s2))F (ts1)− 1

2F (ts2)

2F (ts1)− τ
2φ(s1)F (ts2)

where

(3.5) det(A) =
τ

2
φ(s1)(

τ

2
φ(s2)−

3

2
) + 1.

The second-order ECEM2 is the scheme of the Forward Euler plus the second com-
ponent of the vector d which is

ym+1 = ym + τf(tm, ym) +
τ

2

1

det(A)

(
2F (ts1)−

τ

2
φ(s1)F (ts2)

)
(3.6)

= ym + αf(tm, ym) + βf(tm +
τ

2
, ym +

τ

2
f(tm, ym))

+ γf(tm+1, ym + τf(tm, ym))

where the weights α, β and γ are

(3.7) α = τ − (β + γ), β =
τ

det(A)
, γ = −τ2

4

φ(s1)

det(A)
.

Combining all above these, the second-order ECEM2 can be read as follows:

K1 = f(tm, ym)

K2 = f(tm +
τ

2
, ym +

τ

2
K1)

K3 = f(tm+1, ym + τ K1)

φ(s1) =
1

τ2

[
f(tm +

τ

2
, ym +

τ

2
K1 + τ2)−K2

]
φ(s2) =

1

τ2

[
f(tm+1, ym + τ K1 + τ2)−K3

]
det(A) =

τ

2
φ(s1)

(
τ

2
φ(s2)−

3

2

)
+ 1(3.8)

α = τ − (β + γ)

β =
τ

det(A)

γ = −τ2

4

φ(s1)

det(A)

ym+1 = ym + αK1 + βK2 + γK3.(3.9)

The next question is when and how the ECEM2 algorithm occurs break-down.
Definitely, if det(A) = 0 of the matrix A in (2.5) then ECEM2 should be broken

Simple ECEM Algorithm 579

down. In this case, one may not get proper weights α, β and γ in ECEM2. Let us
put this observation as theorem:

Theorem 3.1. The algorithm will break down if the matrix A in (2.5) is singular.

We now derive the stability function S2(z) for ECEM2 for the case

(3.10) f(t, y) = λ(y − g) +
dg

dt

in (2.1) which explains also Dalquist’s test problem when g = 0 (see [3]).
For this problem, one may get

K1 = λ(ym − g) + g′(t),

K2 = λ(ym +
τ

2
K1 − g) + g′(t),

K3 = λ(ym + τK1 − g) + g′(t)

and

α =
τ3λ2 − 2τ2λ

τ2λ2 − 3τλ+ 4
, β =

4τ

τ2λ2 − 3τλ+ 4
γ =

−τ2λ

τ2λ2 − 3τλ+ 4
.(3.11)

Then, applying all of these to (3.9) yields that

(3.12) ym+1 = S2(τλ)ym + S1(τλ)g + τS0(τλ)
dg

dt

where

(3.13) S2(z) =
z + 4

z2 − 3z + 4
, S1(z) =

z2 − 4z

z2 − 3z + 4
, S0(z) =

4− z

z2 − 3z + 4
.

This yields that

ym+1 = Sm+1
2 (τλ)y0 +

(
m∑

k=0

Sk
2 (τλ)

)
S1(τλ)g + τ

(
m∑

k=0

Sk
2 (τλ)

)
S0(τλ)

dg

dt

= Sm+1
2 (τλ)y0 +

1− Sm+1
2 (τλ)

1− S2(τλ)
S1(τλ)g + τ

1− Sm+1
2 (τλ)

1− S2(τλ)
S0(τλ)

dg

dt
.(3.14)

On the other hand,the explicit RK2 method for this problem is

(3.15) ym+1 = Ŝ2(τλ)ym − Ŝ1(τλ)g + τ Ŝ0(τλ)
dg

dt

where

(3.16) Ŝ2(z) =
1

2
z2 + z + 1, Ŝ1(z) =

1

2
z2 + z, Ŝ0(z) =

1

2
(z + 1).

580 P. Kim, E. Lee and S. D. Kim

These two stability regions by S2(z) and Ŝ2(z) are shown in figure 1 for this problem
(3.10). According to these regions, ECEM2 shows much bigger stability region than
RK2.

4. Third-order ECEM3 Algorithm

For the third-order ECEM3, we will use four CGL points such that s0 =
−1, s1 = − 1

2 , s2 = 1
2 , s3 = 1. The Chebyshev Lagrange interpolation cubic polyno-

mials using these CGL points are

l0(x) = −2

3
(x2 − 1

4
)(x− 1), l1(x) =

4

3
(x2 − 1)(x− 1

2
),(4.1)

l2(x) = −4

3
(x2 − 1)(x+

1

2
), l3(x) =

2

3
(x2 − 1

4
).

Then the matrix A in (2.6) becomes

(4.2) A =

 1
3 − τ

2φ(s1) 1 −1
3

−1 − 1
3 − τ

2φ(s2) 1
4
3 −4 19

6 − τ
2φ(s3)

where

φ(s1) =
1

τ2

[
f
(
tm +

τ

4
, ym +

τ

4
f(tm, ym) + τ2

)
− f

(
tm +

τ

4
, ym +

τ

4
f(tm, ym)

)]
φ(s2) =

1

τ2

[
f
(
tm +

3τ

4
, ym +

3τ

4
f(tm, ym) + τ2

)
− f

(
tm +

3τ

4
, ym +

3τ

4
f(tm, ym)

)]
φ(s3) =

1

τ2

[
f
(
tm+1, ym + τf(tm, ym) + τ2

)
− f

(
tm+1, ym + τf(tm, ym)

)]
,

and the vector F in (2.7) becomes

F (ts1) = f
(
tm +

τ

4
, ym +

τ

4
f(tm, ym)

)
− f(tm, ym),

F (ts2) = f
(
tm +

3τ

4
, ym +

3τ

4
f(tm, ym)

)
− f(tm, ym),(4.3)

F (ts3) = f
(
tm+1, ym + τf(tm, ym)

)
− f(tm, ym).

Solving (2.9) for the vector d using (4.2) and (4.3) and getting the last component

of d, we have the correction term β̂ for the error correction to the Forward-Euler
scheme. For this purpose, let us calculate the inverse A−1 for the matrix A.

Lemma 4.1. For the matrix A in (4.2), consider its block matrix such that A =[
A B
C r

]
where r is the (3, 3) scalar component of A and the block matrix A is the

first principal 2× 2 submatrix of A. Then its inverse is

(4.4) A−1 = (r − CA−1B)−1

[
(r − CA−1B) (A−1 +A−1BCA−1) −A−1B

−CA−1 1

]

Simple ECEM Algorithm 581

Proof. One may check it easily. 2

Because we need only the last component β̂ of d, it is enough to consider the last
row of A−1 . The submatrices A and C in (4.2) is in fact

(4.5) A =

[
1
3 − τ

2φ(s1) 1
−1 −1

3 − τ
2φ(s2)

]
, C =

[
4
3 −4

]
, B =

[
−1

3
1

]
.

The inverse A−1 of A becomes

A−1 =
1

det(A)

[
− 1

3 − τ
2φ(s2) −1
1 1

3 − τ
2φ(s1)

]

where

det(A) =
8

9
+

τ

6
[φ(s1)− φ(s2)] +

τ2

4
φ(s1)φ(s2).

A simple calculation shows us

(4.6) CA−1 =
1

det(A)

[
− 40

9 − 2τ
3 φ(s2) −8

3 + 2τφ(s1)
]

and

(4.7) r̂−1 := r−CA−1B =
19

6
− τ

2
φ(s3)−

1

det(A)

[
−32

27
+ τ
(
2φ(s1) +

2

9
φ(s2)

)]
.

Then, using (4.6), (4.7) and (4.4), the third component β̂ = τ
2

(
A−1F)3 becomes

β̂ =
τ

2

r̂

det(A)

(40
9

+
2τ

3
φ(s2)

)
F (ts1)(4.8)

+
τ

2

r̂

det(A)

(8
3
− 2τφ(s1)

)
F (ts2) +

τ

2
r̂F (ts3).

582 P. Kim, E. Lee and S. D. Kim

Finally, combining all above these, we have the third-order ECEM3 read as follows:

K1 = f(tm, ym)

K2 = f
(
tm +

τ

4
, ym +

τ

4
K1

)
K3 = f

(
tm +

3τ

4
, ym +

3τ

4
K1

)
K4 = f

(
tm+1, ym + τ K1

)
φ(s1) =

1

τ2

[
f
(
tm +

τ

4
, ym +

τ

4
K1 + τ2

)
−f
(
tm +

τ

4
, ym +

τ

4
K1

)]
φ(s2) =

1

τ2

[
f
(
tm +

3τ

4
, ym +

3τ

4
K1 + τ2

)
−f
(
tm +

3τ

4
, ym +

3τ

4
K1

)]
φ(s3) =

1

τ2

[
f
(
tm+1, ym + τK1 + τ2

)
− f

(
tm+1, ym + τK1

)]
det(A) =

8

9
+

τ

6
[φ(s1)− φ(s2)] +

τ2

4
φ(s1)φ(s2)(4.9)

r̂−1 =
19

6
− τ

2
φ(s3)−

1

det(A)

[
−32

27
+ τ
(
2φ(s1) +

2

9
φ(s2)

)]
α = τ − (β + γ + δ)

β =
τ γ̂

det(A)

[20
9

+
τ

3
τ φ(s2)

]
γ =

τ γ̂

det(A)

[4
3
− τ φ(s2)

]
δ =

τ

2
γ̂

ym+1 = ym + αK1 + βK2 + γK3 + δK4(4.10)

The same question arises when and how the ECEM3 algorithm occurs break-
down. Definitely, if det(A) = 0 where the matrix A in 4.5) is the principal submatrix
of A in (4.2) then ECEM3 should be broken down. In this case, one may not get
proper weights α, β, γ and δ in ECEM3 algorithm stated in (4.9). Let us put this
observation as theorem:

Theorem 4.2. The algorithm will break down if the 2 × 2 submatrix A of A is
singular.

5. Fourth-order ECEM4 Algorithm

Simple ECEM Algorithm 583

For the fourth-order ECEM4, we use five CGL points given by s0 = −1, s1 =
− 1√

2
, s2 = 0, s3 = 1√

2
, s4 = 1. The Chebyshev Lagrange interpolation polynomials

using these CGL points are

l0(x) = x(x2 − 1

2
)(x− 1)

l1(x) = −2x(x2 − 1)(x− 1√
2
), l2(x) = 2(x2 − 1)(x2 − 1

2
),

l3(x) = −2x(x2 − 1)(x+
1√
2
), l4(x) = x(x+ 1)(x2 − 1

2
)

The matrix A in (2.6) becomes

(5.1) A =

1√
2
− τ

2φ(s1)
√
2 − 1√

2
1− 1√

2

−
√
2 − τ

2φ(s2)
√
2 −1

2
1√
2

−
√
2 − 1√

2
− τ

2φ(s3) 1 + 1√
2

−4(1− 1√
2
) 2 −4(1 + 1√

2
) 11

2 − τ
2φ(s4)

where

φ(s1) =
1

τ2

[
f
(
tm +

τ

2
(1− 1√

2
), ym +

τ

2
(1− 1√

2
)f(tm, ym) + τ2

)
−f
(
tm +

τ

2
(1− 1√

2
), ym +

τ

2
(1− 1√

2
)f(tm, ym)

)]
φ(s2) =

1

τ2

[
f
(
tm +

τ

2
, ym +

τ

2
f(tm, ym) + τ2

)
−f
(
tm +

τ

2
, ym +

τ

2
f(tm, ym)

)]
φ(s3) =

1

τ2

[
f
(
tm +

τ

2
(1 +

1√
2
), ym +

τ

2
(1 +

1√
2
)f(tm, ym) + τ2

)
−f
(
tm +

τ

2
(1 +

1√
2
), ym +

τ

2
(1 +

1√
2
)f(tm, ym)

)]
φ(s4) =

1

τ2

[
f
(
tm+1, ym + τf(tm, ym) + τ2

)
− f

(
tm+1, ym + τf(tm, ym)

)]
.

The vector F in (2.7) becomes

F (ts1) = f
(
tm +

τ

2
(1− 1√

2
), ym +

τ

2
(1− 1√

2
)f(tm, ym)

)
− f(tm, ym),

F (ts2) = f
(
tm +

τ

2
, ym +

τ

2
f(tm, ym)

)
− f(tm, ym),(5.2)

F (ts1) = f
(
tm +

τ

2
(1 +

1√
2
), ym +

τ

2
(1 +

1√
2
)f(tm, ym)

)
− f(tm, ym),

F (ts4) = f
(
tm+1, ym + τf(tm, ym)

)
− f(tm, ym).

584 P. Kim, E. Lee and S. D. Kim

Solving (2.9) for the vector d using (5.1)and (5.2) and getting the last component

of d, we have the correction term β̂ for the error correction to the Forward-Euler
scheme. Note that we only need the fourth component of τ

2A
−1F. Hence, it is

enough to calculate the fourth row of A−1. For this purpose, let us rewrite the
matrix A in a block matrix form such that

(5.3) A =

[
A B
C D

]
where

A =

[
1√
2
− τ

2φ(s1)
√
2

−
√
2 − τ

2φ(s2)

]
B =

[− 1√
2

1− 1√
2√

2 − 1
2

]
(5.4)

C =

[
1√
2

−
√
2

−4(1− 1√
2
) 2

]
D =

[
− 1√

2
− τ

2φ(s3) 1 + 1√
2

−4(1 + 1√
2
) 11

2 − τ
2φ(s4)

]
(5.5)

Lemma 5.1. For the matrix A in (5.1), its inverse is

(5.6) A−1 =

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

Proof. One may check it easily. 2

From a series computation, it follows that

CA−1 =
1

det(A)

[−2− τ
2
√
2
φ(s2) −2 + τ√

2
φ(s1)

2
√
2 + (2−

√
2) τ φ(s2) 5

√
2− 4− τφ(s1)

]
where

(5.7) det(A) =
τ2

4
φ(s1)φ(s2)−

τ

2
√
2
φ(s2) + 2

and

CA−1B =
1

det(A)
×[

−
√
2 + τ(φ(s1) +

φ(s2)
4) −1 +

√
2 + τ(−φ(s1)

2
√
2

+ (14 − 1
2
√
2
)φ(s2)

8− 4
√
2 + τ(

√
2φ(s1) + (1−

√
2)φ(s2))

−1√
2
+ τ(φ(s1)

2 + (3− 2
√
2)φ(s2))

]

In order to calculate (D − CA−1B)−1, let us denote the matrix as

D − CA−1B =

[
a b
c d

]
2×2

Simple ECEM Algorithm 585

where

a =
(
− 1√

2
+
√
2

1

det(A)

)
+ τ
[
− 1

det(A)
φ(s1)−

1

4

1

det(A)
φ(s2)−

1

2
φ(s3)

]
,

b = 1 +
1√
2
+ (1−

√
2)

1

det(A)
+ τ
[1

2
√
2

1

det(A)
φ(s1) +

√
2− 1

4

1

det(A)
φ(s2)

]
,

c = −4(1 +
1√
2
)− (8− 4

√
2)

1

det(A)
+ τ
[√

2
1

det(A)
φ(s1) + (

√
2− 1)

1

det(A)
φ(s2)

]
,

d =
11

2
+

1√
2

1

det(A)
+ τ
[
−1

2

1

det(A)
φ(s1) + (2

√
2− 3)

1

det(A)
φ(s2)−

1

2
φ(s4)

]
.

Then

(5.8) (D − CA−1B)−1 =
1

ad− bc

[
d −b
−c a

]
.

The last row (a41 a42 a43 a44) of matrix A−1, which is the second-row of the subma-
trices

−(D − CA−1B)−1CA−1, and (D − CA−1B)−1

in (5.6), becomes

(5.9)

a41
a42
a43
a44

 =
1

ad− bc

−1
det(A)

[
c(2 + 1

2
√
2
τφ(s2)) + a(2

√
2 + (2−

√
2) τ φ(s2))

]
−1

det(A)

[
c(2− 1

2τφ(s1)) + a(5
√
2− 4− τ φ(s1))

]
−c

a

Therefore, the fourth component β̂ = τ

2

(
A−1F)4 becomes

β̂ = τ
a41
2

F (ts1) + τ
a42
2

F (ts2) + τ
a43
2

F (ts3) + τ
a44
2

F (ts4).(5.10)

Then, using (5.2), the ECEM4 becomes

ym+1 = ym + αF (tm, ym)(5.11)

+ βf
(
tm +

τ

2
(1− 1√

2
), ym +

τ

2
(1− 1√

2
)f(tm, ym)

)
+ γf

(
tm +

τ

2
, ym +

τ

2
f(tm, ym)

)
+ δf

(
tm +

τ

2
(1 +

1√
2
), ym +

τ

2
(1 +

1√
2
)f(tm, ym)

)
+ ηf

(
tm+1, ym + τf(tm, ym)

)
,

586 P. Kim, E. Lee and S. D. Kim

where the weights are

α = τ − (β + γ + δ + η), β =
a41
2

τ, γ =
a42
2

τ, δ =
a43
2

τ, η =
a44
2

τ .(5.12)

Finally, combining all above these, we have the fourth-order ECEM4 read as: iterate
the followings;

1. Calculate the weights α, β, γ, δ and γ in (5.12) using (5.7) and (5.9).

2. Calculate Ki (i = 1, 2, 3, 4, 5)

K1 = f(tm, ym)

K2 = f
(
tm +

τ

2
(1− 1√

2
), ym +

τ

2
(1− 1√

2
)K1

)
K3 = f

(
tm +

τ

2
, ym +

τ

2
(1− 1√

2
)K1

)
K4 = f

(
tm +

τ

2
(1 +

1√
2
), ym +

τ

2
(1 +

1√
2
)K1

)
K5 = f

(
tm+1, ym + τ K1

)
3. ym+1 = ym + αK1 + βK2 + γK3 + δK4 + ηK5.

Definitely, if det(A) = 0 where the matrix A in (5.4) is the principal submatrix of
A in (5.1) and det(D − CA−1B) = 0 in (5.4 -5.5), then ECEM4 should be broken
down. In this case, one may not get proper weights α, β, γ, δ and η in ECEM4.

Theorem 5.2. The algorithm will break down if the 2× 2 submatrix A in (5.4) of
A and the matrix D − CA−1B are singular.

6. Comparison with Runge-Kutta Methods

The Runge-Kutta method is one of the most popular one-step multistage
method which uses intermediate steps to obtain a higher convergence but then
discard all previous informations when it moves to the next step. In terms of using
the intermediate steps before taking a next step, ECEM can be regarded as one-step
multistage method. In order to compare ECEM with RK method, we first briefly
introduce the well-known RK method up to order 4 and then will make compar-
isons. The typical explicit p-stage Runge-Kutta method (RKp for p = 2, 3, 4) is
given by

(6.1) ym+1 = ym + τ

p∑
j=1

bjK̂j , for p = 2, 3, 4,

where K̂1 = f(tm, ym) and

(6.2) K̂j = f
(
tm + τcj , ym + τ

(
âj,1K̂1 + · · ·+ âj,j−1K̂j−1

))
, for j = 2, · · · , s

Simple ECEM Algorithm 587

with bj (1 ≤ j ≤ p), cj (2 ≤ j ≤ p), and âji (1 ≤ i ≤ j − 1) real numbers.
In order to specify a particular p-stage Runge-Kutta method, we have to provide
the coefficients aji for 1 ≤ i < j ≤ p, weights bj for j = 1, 2, 3, 4 and nodes cj
for j = 2, 3, 4. It is known that the explicit Runge-Kutta method is consistent if∑j−1

i=1 âji = cj for j = 2, 3, 4 (see [2], [5] and [6] for further details).
Based on the formula (2.11), p-th order ECEM also is summarized as

(6.3) ym+1 = ym +

p∑
j=0

ajKj , for p = 2, 3, 4,

where
(6.4)

Kj = f
(
tsj , y(tsj)

)
with tsj = tm +

1 + sj
2

τ and sj = − cos
jπ

p
for 0 ≤ j ≤ p.

The Kj can be rewritten as K0 = f(tm, ym) which is

(6.5) Kj = f

(
tm + τ

1 + sj
2

, ym + τ
1 + sj

2
K0

)
for 1 ≤ j ≤ p.

Here the coefficients aj satisfies
∑p

j=0 aj = τ . Both ECEMp and RKp yield the
same p-order of convergence. As one can easily see from two formulas (6.1) and
(6.3), the biggest difference between ECEM and RK is the function evaluation on
each stage. ECEM only uses K0 = f(xm, ym), that is, function evaluation at CGL-
points while RK requires to use all previous intermediate information to generate
the next stage function value. In 1- or 2-dimensional problems, keeping all previous
stage information K̂1, · · · , K̂p may not be a big trouble, however, in dealing with
higher-dimensional problems, it can cause a trouble. Another difference is that the
coefficients of ECEM formula is depending on the function f while the ones of RK
are constants. Table 1 summarizes the above.

The most critical comparison can be made in stability area. The following figure
1 compares stability regions for ECEM and RK with order 2,3 and 4. As shown in
figure 1, ECEM has much bigger stability region than RK.

7. Conclusion

The developed ECEM algorithm in [11] was not stated as the way for explicit
RK methods even though the usages of finite difference for φ(s) is mentioned for
the Jacobian fy(t, y). As this result, one may have some difficulties its application
to various kind of time-dependent partial differential equations. Once ECEM al-
gorithms are stated like the class of explicit RK methods, one may ask how much
they are different from RK methods. It is shown that ECEM can be explained by
a numerical quadrature using CGL nodes in section 2. Still, it is remained how we
can determine the numerical weights for chosen internal nodes to get convergence
of ECEM algorithms. As we see the discussion in section 6, one may note that

588 P. Kim, E. Lee and S. D. Kim

ECEM p RK p

Convergence order p-convergence globally order p-convergence globally

ym+1 ym +
∑p

j=0 ajKj ym + τ
∑p

j=1 bjKj

K0 = f(tm, ym) K1 = f(tm, ym)

Multi-stage Kj = f
(
tm + τ

1+sj
2 , ỹm

)
K̂j = f (tm + τcj , ŷm)

evaluation ỹm = ym + τ
1+sj
2 K0 ŷm = ym + τ

∑j−1
i=1 âj,iK̂i

1 ≤ j ≤ p 2 ≤ j ≤ p

Kj , K̂j
<

evaluation cost

on each step ≪

storage requirements (specially in 3D computations)

f -depending weights aj constant weights bj

Weights
∑p

j=0 aj = τ τ
∑p

j=1 bj = τ

Butcher’s table

weights
≫

evaluation cost

Table 1: Comparison of ECEM and RK

the critical difference between RK methods and ECEM algorithms rely on whether
the employment of previous all function values to get next function evaluations.
As a result, the stability properties of RK and ECEM are quite different. In this
stability sense, ECEM is even better than explicit RK methods possessing same
convergence order. If one may change the platform from a local Euler polygon to
a polynomial of degree q, then one may have its convergence order 2q+2(see [12]).
With such polynomials platform, it is still remained to investigate the concise form
of algorithms like RK methods. For a 2 × 2 system of initial value problems such
that

(7.1)

du
dt

dv
dt

 =

a b

c d

f(t, u)
g(t, v)

 ,

one may use ECEM methods easily. However, an application of ECEM will be
provided later for a general linear system with f(t, u, v) and g(t, u, v) in (7.1).

Simple ECEM Algorithm 589

-12

12

0

4

8

-4

-8

-12 -8 -4 0 4 8 12

-12

12

0

4

8

-4

-8

-12 -8 -4 0 4 8 12

-12

12

0

4

8

-4

-8

-12 -8 -4 0 4 8 12

-12

12

0

4

8

-4

-8

-12 -8 -4 0 4 8 12

-12

12

0

4

8

-4

-8

-12 -8 -4 0 4 8 12

-12

12

0

4

8

-4

-8

-12 -8 -4 0 4 8 12

ECEM2 RK2

ECEM3 RK3

ECEM4 RK4

Figure 1: Stability regions of ECEM and RK for Dalquist’s problem : shaded
area is the stable region

References

[1] J. C. Butcher, On Runge-Kutta processes of high order, Journal of the Australian
Mathematical Society, 4(1964), 179-194.

[2] J. C. Butcher Numerical Methods for Ordinary Differential Equations, New York:
John Wiley and Sons(2003).

[3] G. Dahlquist, A special stability problem for linear multistep methods, BIT 3(1963),
27–43.

590 P. Kim, E. Lee and S. D. Kim

[4] P. J. Davis, P. Rabinowitz Methods of Numerical Integration, Academic Press, New
York(1975).

[5] E. Hairer, S.P Norsett, G. Wanner, Solving ordinary differential equations I, nonstiff
problems, Springer, Berlin(1993).

[6] E. Hairer, G. Wanner, Solving ordinary differential equations. II Stiff and Differential-
Algebraic Problems, Springer Series in Computational Mathematics, Springer(1996).

[7] A. C. Hindmarsh, ODEPACK, A systematized collection of ODE solvers, in: R. S.
Stepleman et al., eds, Scientific Computing(North-Holland, Amsterdam, 1983), 55-64

[8] F. Iavernaro, F. Mazzia, Solving ordinary differential equations by generalized Adams
methods: properties and implementation techniques, Appl. Numer. Math., 28(1998),
107–126.

[9] F. Iavernaro, F. Mazzia, Block-boundary value methods for the solution of ordinary
differential equations, SIAM J. Sci. Comput., 21(1999), 323–339.

[10] L. G. Ixaru, Exponentially fitted variable two-step BDF algorithm for first order ODEs,
Comput. Phys. Comm., 150(2003), 116-128.

[11] P. Kim, X. Piao and S. Kim, An error corrected Euler method for solving stiff problems
based on Chebyshev collocation, SIAM J. Numer. Anal., 49(2011), 2211-2230.

[12] S. D. Kim, X. Piao, D. H. Kim, P. Kim Convergence on error correction methods for
solving initial value problems, J. Comput. Appl. Math., 236(2012), 4448-4461.

[13] J. Kwon, S. D. Kim, X. Piao, P. Kim, A Chebyshev collocation method for a stiff
initial value problem and its stability, Kyungpook Math. J., 51(2011), 435-456.

[14] W. Liniger, R. A. Willoughby, Efficient integration methods for stiff systems of ordi-
nary differential equations, SIAM J. Numer. Anal., 7(1970), 47–66.

[15] A. Prothero, A. Robinson, On the stability and accuracy of one-step methods for
solving stiff systems of ordinary differential equations, Math. Comput., 28(1974),
145–162.

[16] H. Ramos, R. Garćia-Rubio, Analysis ofa Chebyshev-based backward differentiation
formulae and relation with Runge-Kutta collocation methods, Int. J. Comput. Math.,
88(2011), 555-577.

[17] H. Ramos, J. Vigo-Aguiar, A fourth-order Runge-Kutta method based on BDF-type
Chebyshev approximations, J. Comp. Appl. Numer., 204(2007), 124–136.

[18] H. Ramos, A non-standard explicit integration scheme for initial-value problems,
Appl. Math. Comp., 189(2007), 710–718.

[19] H. H. Rosenbrock, Some general implicit processes for the numerical solution of dif-
ferential equations, Computer J., 5(1962/63), 329–330.

[20] L. F. Shampine, M.W. Reichelt, The MATLAB ODE suite, SIAM J. Sci. Comput.,
18(1997), 1–22.

[21] M.M. Stabrowski, An efficient algorithm for solving stiff ordinary differential equa-
tions, Simul. Pract. Theory 5(1997), 333-344.

[22] J. G. Verwer, E. J. Spee, J. G. Blom, W.H. Hundsdorfer, A second-order Rosen-
brock method applied to photochemical dispersion problems, SIAM J. Sci. Comput.,
20(1999), 1456–1480.

Simple ECEM Algorithm 591

[23] J. Vigo-Aguiar, H. Ramos, A family of A-stable Runge-Kutta collocation methods of
higher order for initial-value problems, IMA J. Numer. Anal., 27(2007), 798–817.

[24] X. Y. Wu, J. L. Xia, Two low accuracy methods for stiff systems, Appl. Math. Com-
put., 123(2001), 141-153.

