과제정보
연구 과제 주관 기관 : Chonbuk National University
참고문헌
-
S. Chang, On minimal hypersurfaces with constant scalar curvatures in
$S^4$ , J. Diff. Geom., 37(1993), 523-534. https://doi.org/10.4310/jdg/1214453898 - S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Duke Math. J., 61(1990), 195-206. https://doi.org/10.1215/S0012-7094-90-06109-5
-
W. Y. Hsiang, On the construction of innitely many congruence classes of imbedded closed minimal hypersurfaces in
$S^n$ (1) for all$n{\geq}3$ , Duke Math. J., 55(2)(1987), 361-367. https://doi.org/10.1215/S0012-7094-87-05520-7 - H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, Annals of Math., 89(1969), 187-191. https://doi.org/10.2307/1970816
- C. K. Peng and C. L. Terng, Minimal hypersurface of spheres with constant scalar curvature, Annals of Math. Studies, No. 103, Princeton University Press, Princeton, NJ, (1983), 177-198.
- J. Simons, Minimal varieties in a Riemannian manifold, Ann. of Math., 88(1968), 62-105. https://doi.org/10.2307/1970556
-
J. U. So, On G-invariant Minimal Hypersurfaces with Constant Scalar Curvatures in
$S^5$ , Commun. Korean Math. Soc., 17(2002), 261-278. https://doi.org/10.4134/CKMS.2002.17.2.261 - H. Yang and Q. M. Cheng, Chern's conjecture on minimal hypersurfaces, Math. Z., 227(1998), 377-390. https://doi.org/10.1007/PL00004382
- S. T. Yau, Problem section, Annals of Math. Studies, No. 102, Princeton University Press, Princeton, NJ, (1982), 693.