On G-invariant Minimal Hypersurfaces with Constant Scalar Curvatures in S^{5}

Jae-Up So
Department of Mathematics and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea
e-mail: jaeup@jbnu.ac.kr
Abstract. Let $G=O(2) \times O(2) \times O(2)$. Then a closed G-invariant minimal hypersurface with constant scalar curvature in S^{5} is a product of spheres, i.e., the square norm of its second fundamental form, $S=4$.

1. Introduction

Let M^{n} be a closed minimally immersed hypersurface in the unit sphere S^{n+1}, and h its second fundamental form. Denote by R and S its scalar curvature and the square norm of h, respectively. It is well known that $S=n(n-1)-R$ from the structure equations of both M^{n} and S^{n+1}. In particular, S is constant if and only if M has constant scalar curvature. In 1968, J. Simons [6] observed that if $S \leq n$ everywhere and S is constant, then $S \in\{0, n\}$. Clearly, M^{n} is an equatorial sphere if $S=0$. And when $S=n, M^{n}$ is indeed a product of spheres, due to the works of Chern, do Carmo, and Kobayashi [2] and Lawson [4].

We are concerned about the following conjecture posed by Chern [9].
Chern Conjecture. For any $n \geq 3$, the set R_{n} of the real numbers each of which can be realized as the constant scalar curvature of a closed minimally immersed hypersurface in S^{n+1} is discrete.
C. K. Peng and C. L. Terng [5] proved

Theorem(Peng and Terng, 1983). Let M^{n} be a closed minimally immersed hypersurface with constant scalar curvature in S^{n+1}. If $S>n$, then $S>n+1 /(12 n)$.
S. Chang [1] proved the following theorem by showing that $S=3$ if $S \geq 3$ and M^{3} has multiple principal curvatures at some point.

Theorem(Chang, 1993). A closed minimally immersed hypersurface with constant

Received July 25, 2012; accepted August 23, 2012.
2010 Mathematics Subject Classification: 53C05, 53C42.
Key words and phrases: scalar curvature, G-invariant minimal hypersurface, square norm. This paper was supported by research funds of Chonbuk National University in 2007.
scalar curvature in S^{4} is either an equatorial 3-sphere, a product of spheres, or a Cartan's minimal hypersurface. In particular, $R_{3}=\{0,3,6\}$.
H. Yang and Q. M. Cheng [8] proved

Theorem(Yang and Cheng, 1998). Let M^{n} be a closed minimally immersed hypersurface with constant scalar curvature in S^{n+1}. If $S>n$, then $S \geq n+n / 3$.

Let $G \simeq O(k) \times O(k) \times O(q) \subset O(2 k+q)$ and set $2 k+q=n+2$. Then W. Y. Hsiang [3] investigated G-invariant, minimal hypersurfaces, M^{n} in S^{n+1}, by studying their generating curves, M^{n} / G, in the orbit space S^{n+1} / G. He showed that there exit infinitely many closed minimal hypersurfaces in S^{n+1} for all $n \geq 2$, by proving the following theorem:

Theorem(Hsiang, 1987). For each dimension $n \geq 2$, there exist infinitely many, mutually noncongruent closed G-invariant minimal hypersurfaces in S^{n+1}, where $G \simeq O(k) \times O(k) \times O(q)$ and $k=2$ or 3 .

We studied G-invariant minimal hypersurfaces, in stead of minimal ones, with constant scalar curvatures in S^{5}. In this paper, we shall prove the following classification theorem:

Our Theorem. A closed G-invariant minimal hypersurface with constant scalar curvature in S^{5} is a product of spheres, i.e., $S=4$, where $G=O(2) \times O(2) \times O(2)$.

Let M^{4} be a closed G-invariant minimal hypersurface with constant scalar curvature in S^{5}. By virtue of the results of Simons [6], we see that if $S \leq 4$, then $S \in\{0,4\}$. In Lemma 4.3, we show that if M^{4} has 2 distinct principal curvatures at some point, then $S=4$. Since any equatorial sphere is not G-invariant, we see that if $S \leq 4$ then $S=4$. Moreover, Lemma 4.3 says that if $S>4$, then M^{4} does not have 2 distinct principal curvatures anywhere. Therefore, if $S>4$ then M^{4} must have simple principal curvatures everywhere or 3 distinct principal curvatures at some point. To prove our Theorem, we need only to show that it is impossible. In Lemma 5.1 and Lemma 5.2, we show that if $S>4$ then M^{4} does not have simple principal curvatures everywhere and 3 distinct principal curvatures anywhere, respectively.

2. Preliminary Results

Let M^{n} be a manifold of dimension n immersed in a Riemannian manifold \bar{M}^{n+1} of dimension $n+1$. Let $\bar{\nabla}$ and \langle,$\rangle be the connection and metric tensor respectively$ of \bar{M}^{n+1} and let $\overline{\mathcal{R}}$ be the curvature tensor with respect to the connection $\bar{\nabla}$ on \bar{M}^{n+1}. Choose a local orthonormal frame field e_{1}, \ldots, e_{n+1} in \bar{M}^{n+1} such that after restriction to M^{n}, the e_{1}, \ldots, e_{n} are tangent to M^{n}. Denote the dual coframe by
$\left\{\omega_{A}\right\}$. Here we will always use i, j, k, \ldots, for indices running over $\{1,2, \ldots, n\}$ and A, B, C, \ldots, over $\{1,2, \ldots, n+1\}$.

As usual, the second fundamental form h and the mean curvature H of M^{n} in \bar{M}^{n+1} are respectively defined by

$$
h(v, w)=\left\langle\bar{\nabla}_{v} w, e_{n+1}\right\rangle \quad \text { and } \quad H=\sum_{i} h\left(e_{i}, e_{i}\right) .
$$

M^{n} is said to be minimal if H vanishes identically. And the scalar curvature \bar{R} of \bar{M}^{n+1} is defined by

$$
\bar{R}=\sum_{A, B}\left\langle\overline{\mathcal{R}}\left(e_{A}, e_{B}\right) e_{B}, e_{A}\right\rangle
$$

Then the structure equations of \bar{M}^{n+1} are given by

$$
\begin{aligned}
& d \omega_{A}=\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0 \\
& d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B}-\frac{1}{2} \sum_{C, D} K_{A B C D} \omega_{C} \wedge \omega_{D}
\end{aligned}
$$

where $K_{A B C D}=\left\langle\overline{\mathcal{R}}\left(e_{A}, e_{B}\right) e_{D}, e_{C}\right\rangle$. When \bar{M}^{n+1} is the unit sphere S^{n+1}, we have

$$
K_{A B C D}=\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C} .
$$

Next, we restrict all tensors to M^{n}. First of all, $\omega_{n+1}=0$ on M^{n}. Then

$$
\sum_{i} \omega_{(n+1) i} \wedge \omega_{i}=d \omega_{n+1}=0
$$

By Cartan's lemma, we can write

$$
\omega_{(n+1) i}=-\sum_{j} h_{i j} \omega_{j} .
$$

Here, we see

$$
\begin{align*}
h_{i j} & =-\omega_{(n+1) i}\left(e_{j}\right)=-\left\langle\bar{\nabla}_{e_{j}} e_{n+1}, e_{i}\right\rangle=\left\langle\bar{\nabla}_{e_{j}} e_{i}, e_{n+1}\right\rangle=\left\langle\bar{\nabla}_{e_{i}} e_{j}, e_{n+1}\right\rangle \tag{2.1}\\
& =h\left(e_{i}, e_{j}\right)
\end{align*}
$$

Second, from

$$
\left\{\begin{array}{c}
d \omega_{i}=\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0 \\
d \omega_{i j}=\sum_{l} \omega_{i l} \wedge \omega_{l j}-\frac{1}{2} \sum_{l, m} R_{i j l m} \omega_{l} \wedge \omega_{m}
\end{array}\right.
$$

we find the curvature tensor of M^{n} is

$$
\begin{equation*}
R_{i j l m}=K_{i j l m}+h_{i l} h_{j m}-h_{i m} h_{j l} . \tag{2.2}
\end{equation*}
$$

Therefore, if M^{n} is a piece of minimally immersed hypersurface in the unit sphere S^{n+1} and R is the scalar curvature of M^{n}, then we have

$$
\begin{equation*}
R=n(n-1)-S, \tag{2.3}
\end{equation*}
$$

where $S=\sum_{i, j} h_{i j}^{2}$ is the square norm of h.
Given a symmetric 2-tensor $T=\sum_{i, j} T_{i j} \omega_{i} \omega_{j}$ on M^{n}, we also define its covariant derivatives, denoted by $\nabla T, \nabla^{2} T$ and $\nabla^{3} T$, etc. with components $T_{i j, k}, T_{i j, k l}$ and $T_{i j, k l p}$, respectively, as follows:

$$
\begin{gather*}
\sum_{k} T_{i j, k} \omega_{k}=d T_{i j}+\sum_{s} T_{s j} \omega_{s i}+\sum_{s} T_{i s} \omega_{s j} \tag{2.4}\\
\sum_{l} T_{i j, k l} \omega_{l}=d T_{i j, k}+\sum_{s} T_{s j, k} \omega_{s i}+\sum_{s} T_{i s, k} \omega_{s j}+\sum_{s} T_{i j, s} \omega_{s k} \\
\sum_{p} T_{i j, k l p} \omega_{p}=d T_{i j, k l}+\sum_{s} T_{s j, k l} \omega_{s i}+\sum_{s} T_{i s, k l} \omega_{s j}+\sum_{s} T_{i j, s l} \omega_{s k}+\sum_{s} T_{i j, k s} \omega_{s l}
\end{gather*}
$$

In general, the resulting tensors are no longer symmetric, and the rule to switch sub-index obeys the Ricci formula as follows:

$$
\begin{align*}
T_{i j, k l}-T_{i j, l k}= & \sum_{s} T_{s j} R_{s i k l}+\sum_{s} T_{i s} R_{s j k l} \tag{2.5}\\
T_{i j, k l p}-T_{i j, k p l}= & \sum_{s} T_{s j, k} R_{s i l p}+\sum_{s} T_{i s, k} R_{s j l p}+\sum_{s} T_{i j, s} R_{s k l p} \\
T_{i j, k l p m}-T_{i j, k l m p}= & \sum_{s} T_{s j, k l} R_{s i p m} \\
& +\sum_{s} T_{i s, k l} R_{s j p m}+\sum_{s} T_{i j, s l} R_{s k p m}+\sum_{s} T_{i j, k s} R_{s l p m}
\end{align*}
$$

For the sake of simplicity, we always omit the comma (,) between indices in the special case $T=\sum_{i, j} h_{i j} \omega_{i} \omega_{j}$ with $\bar{M}^{n+1}=S^{n+1}$. Since

$$
\sum_{C, D} K_{(n+1) i C D} \omega_{C} \wedge \omega_{D}=0
$$

on M^{n} when $\bar{M}^{n+1}=S^{n+1}$, we find

$$
d\left(\sum_{j} h_{i j} \omega_{j}\right)=\sum_{j, l} h_{j l} \omega_{l} \wedge \omega_{j i} .
$$

Therefore,

$$
\sum_{j, l} h_{i j l} \omega_{l} \wedge \omega_{j}=\sum_{j}\left(d h_{i j}+\sum_{l} h_{l j} \omega_{l i}+\sum_{l} h_{i l} \omega_{l j}\right) \wedge \omega_{j}=0
$$

i.e., $h_{i j l}$ is symmetric in all indices.

In the case that M^{n} is minimal, by differentiating $\sum_{l} h_{l l}=0$ we have

$$
\begin{equation*}
0=e_{j} e_{i}\left(\sum_{l} h_{l l}\right)=\sum_{l} e_{j}\left(h_{l l i}\right)=\sum_{l} h_{l l i j} \tag{2.6}
\end{equation*}
$$

and so,

$$
\begin{align*}
& \sum_{l} h_{i j l l}=\sum_{l} h_{l i j l}=\sum_{l}\left\{h_{l i l j}+\sum_{m}\left(h_{m i} R_{m l j l}+h_{l m} R_{m i j l}\right)\right\} \tag{2.7}\\
& =(n-1) h_{i j}+\sum_{l, m}\left\{-h_{m i} h_{m l} h_{l j}+h_{l m}\left(\delta_{m j} \delta_{i l}-\delta_{m l} \delta_{i j}+h_{m j} h_{i l}-h_{m l} h_{i j}\right)\right\} \\
& =n h_{i j}-\sum_{l, m} h_{l m} h_{m l} h_{i j}=(n-S) h_{i j} .
\end{align*}
$$

It follows that

$$
\begin{equation*}
\frac{1}{2} \Delta S=(n-S) S+\sum_{i, j, l} h_{i j l}^{2} . \tag{2.8}
\end{equation*}
$$

In the case that S is constant, by differentiating $S=\sum_{i, j} h_{i j}^{2}$ twice, we have

$$
\begin{equation*}
0=\sum_{i, j} h_{i j} h_{i j k l}+\sum_{i, j} h_{i j k} h_{i j l} . \tag{2.9}
\end{equation*}
$$

3. G-invariant Hypersurface in S^{n+1}

For $G \simeq O(k) \times O(k) \times O(q), R^{n+2}$ splits into the orthogonal direct sum of irreducible invariant subspaces, namely

$$
R^{n+2} \simeq R^{k} \oplus R^{k} \oplus R^{q}=\{(X, Y, Z)\}
$$

where X and Y are generic k-vectors and Z is a generic q-vector. Here if we set $x=|X|, y=|Y|$ and $z=|Z|$, then the orbit space R^{n+2} / G can be parametrized by $(x, y, z) ; x, y, z \in R_{+}$and the orbital distance metric is given by $d s^{2}=d x^{2}+$
$d y^{2}+d z^{2}$. By restricting the above G-action to the unit sphere $S^{n+1} \subset R^{n+2}$, it is easy to see that

$$
S^{n+1} / G \simeq\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1 ; x, y, z \geq 0\right\}
$$

which is isometric to a spherical triangle of $S^{2}(1)$ with $\pi / 2$ as its three angles. The orbit labeled by (x, y, z) is exactly $S^{k-1}(x) \times S^{k-1}(y) \times S^{q-1}(z)$.

In this section, M^{n} is a closed G - invariant hypersurface in $S^{n+1} . \nabla$ and $\bar{\nabla}$ are the Riemannian connections of M^{n} and S^{n+1}, respectively. To investigate those G-invariant minimal hypersurfaces, we study their generating curves, $\gamma(s)=$ $(x(s), y(s), z(s))=M^{n} / G$, in the orbit space S^{n+1} / G.

Let us start with the following two lemmas which play very important roles in proving our Theorem.

Lemma 3.1. Let M^{n} be a G-invariant hypersurface in S^{n+1}. Then there is a local orthonormal frame field e_{1}, \ldots, e_{n+1} on S^{n+1} such that after restriction to M^{n}, the e_{1}, \ldots, e_{n} are tangent to M^{n} and $h_{i j}=0$ if $i \neq j$.
Proof. Let $\left(X_{0}, Y_{0}, Z_{0}\right) \in M^{n} \subset S^{n+1}$ with $x=\left|X_{0}\right|, y=\left|Y_{0}\right|$ and $z=\left|Z_{0}\right|$ and choose a local orthonormal frame field on a neighborhood of $\left(X_{0}, Y_{0}, Z_{0}\right)$ as follows.

First, we choose vector fields $\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}, \widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}$ on a neighborhood U of $\left(X_{0}, Y_{0}, Z_{0}\right)$ in the orbit $S^{k-1}(x) \times S^{k-1}(y) \times S^{q-1}(z)$ such that:
(1) $\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}$ are lifts of orthonormal tangent vector fields u_{1}, \ldots, u_{k-1} on a neighborhood of X_{0} in $S^{k-1}(x)$ to $S^{k-1}(x) \times S^{k-1}(y) \times S^{q-1}(z)$ respectively,
(2) $\widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}$ are lifts of orthonormal tangent vector fields v_{1}, \ldots, v_{k-1} on a neighborhood of Y_{0} in $S^{k-1}(y)$ to $S^{k-1}(x) \times S^{k-1}(y) \times S^{q-1}(z)$ respectively,
(3) $\widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}$ are lifts of orthonormal tangent vector fields w_{1}, \ldots, w_{q-1} on a neighborhood of Z_{0} in $S^{q-1}(z)$ to $S^{k-1}(x) \times S^{k-1}(y) \times S^{q-1}(z)$ respectively.

Second, let $N(s)=\left(n_{1}(s), n_{2}(s), n_{3}(s)\right)$ be a local unit normal vector field on γ in S^{n+1} / G. For each $p=(X, Y, Z) \in U$, let $\widetilde{\gamma}(p, s)$ be the lift curve of $\gamma(s)$ in S^{n+1} through p. and let $\widetilde{N}(p, s)$ be the lift vector field of $N(s)$ on $\widetilde{\gamma}(p, s)$. Then we know

$$
\begin{equation*}
\widetilde{\gamma}(p, s)=(X(s), Y(s), Z(s))=\left(x(s) \frac{X}{x}, y(s) \frac{Y}{y}, z(s) \frac{Z}{z}\right) \tag{3.1}
\end{equation*}
$$

and so,

$$
\begin{equation*}
\widetilde{\gamma}^{\prime}(p, s)=\left(x^{\prime}(s) \frac{X}{x}, y^{\prime}(s) \frac{Y}{y}, z^{\prime}(s) \frac{Z}{z}\right) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{N}(p, s)=\left(n_{1}(s) \frac{X(s)}{x(s)}, n_{2}(s) \frac{Y(s)}{y(s)}, n_{3}(s) \frac{Z(s)}{z(s)}\right) \tag{3.3}
\end{equation*}
$$

The two orthonormal vector fields $\widetilde{\gamma}^{\prime}$ and \widetilde{N} are defined on a neighborhood in M^{n}.
Third, let us extend $\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}, \widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}$ over a neighborhood in M as follows:

Let $\bar{\alpha}_{i}(u)=\left(\alpha_{i}(u), Y, Z\right)$ be a curve in $S^{k-1}(x) \times S^{k-1}(y) \times S^{q-1}(z)$ through $p=(X, Y, Z)$ such that $\bar{\alpha}_{i}(0)=p$ and $\bar{\alpha}_{i}^{\prime}(0)=\left(\alpha_{i}^{\prime}(0), 0,0\right)=\widetilde{u}_{i}(p)$. From (2.1),

$$
\overline{\bar{\alpha}}_{i}(u)=\left(x(s) \frac{\alpha_{i}(u)}{x}, y(s) \frac{Y}{y}, z(s) \frac{Z}{z}\right)
$$

is a a curve in the orbit $S^{k-1}(x(s)) \times S^{k-1}(y(s)) \times S^{q-1}(z(s))$ through $\widetilde{\gamma}(p, s)$ and

$$
\overline{\bar{\alpha}}_{i}^{\prime}(0)=\frac{x(s)}{x}\left(\alpha_{i}^{\prime}(0), 0,0\right) \quad\left(: \text { parallel to } \widetilde{u}_{i}(p) \text { in the Euclidean space }\right)
$$

is tangent to the orbit $S^{k-1}(x(s)) \times S^{k-1}(y(s)) \times S^{q-1}(z(s))$ and so, to M^{n}. It says that the vector field obtained by Euclidean parallel translation of \widetilde{u}_{i} along $\widetilde{\gamma}$ is tangent to M^{n}. Hence,
$(*)$ extend $\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}, \widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}$ over a neighborhood in M by Euclidean parallel translation along $\widetilde{\gamma}$.

Then these vector fields $\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}, \widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}, \widetilde{\gamma}^{\prime}, \widetilde{N}$ is a local orthonormal frame field on M^{n} and $\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}, \widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}, \widetilde{\gamma}^{\prime}$ are tangent to M^{n}.

Last, let us extend $\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}, \widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}, \widetilde{\gamma}^{\prime}, \widetilde{N}$ over a neighborhood in S^{n+1} as follows:

From (2.1), we have

$$
\begin{equation*}
h_{i j}=\left\langle\bar{\nabla}_{\tilde{u}_{i}} \widetilde{u}_{j}, \tilde{N}\right\rangle=-\left\langle\widetilde{u}_{j}, \bar{\nabla}_{\tilde{u}_{i}} \tilde{N}\right\rangle . \tag{3.4}
\end{equation*}
$$

Here, $\bar{\nabla}_{\widetilde{u}_{i}} \widetilde{N}$ depends only the values of \widetilde{N} along any smooth curve $\bar{\alpha}_{i}$ such that $\bar{\alpha}_{i}^{\prime}=\widetilde{u}_{i}$. Since \widetilde{N} is already defined on a neighborhood in M^{n} and \widetilde{u}_{i} is a tangent vector field on the neighborhood in $M^{n}, \bar{\nabla}_{\widetilde{u}_{i}} \widetilde{N}$ does not depend on the choice of extending \widetilde{N}. Hence,

$$
\begin{equation*}
\text { extend all vector fields over a neighborhood in } S^{n+1} \text { properly. } \tag{**}
\end{equation*}
$$

The extended vector fields $\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}, \widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}, \widetilde{\gamma}^{\prime}, \widetilde{N}$ is a local orthonormal frame field on S^{n+1}. After restriction these vector fields to M^{n},
$\widetilde{u}_{1}, \ldots, \widetilde{u}_{k-1}, \widetilde{v}_{1}, \ldots, \widetilde{v}_{k-1}, \widetilde{w}_{1}, \ldots, \widetilde{w}_{q-1}, \widetilde{\gamma}^{\prime}$ are tangent to M^{n}. For convenience, we write them as e_{1}, \ldots, e_{n+1} in order.

Now, let us compute $h_{i j}(p)$. From (3.2) and (3.3), we have

$$
\left\{\begin{array}{l}
\widetilde{\gamma}^{\prime}\left(\bar{\alpha}_{i}(u), 0\right)=\left(x^{\prime}(0) \frac{\alpha_{i}(u)}{x}, y^{\prime}(0) \frac{Y}{y}, z^{\prime}(0) \frac{Z}{z}\right), \tag{3.5}\\
\widetilde{N}\left(\bar{\alpha}_{i}(u), 0\right)=\left(n_{1}(0) \frac{\alpha_{i}(u)}{x}, n_{2}(0) \frac{Y}{y}, n_{3}(0) \frac{Z}{z}\right) .
\end{array}\right.
$$

If ∇^{*} is the Riemannian connection of R^{n+2}, then $\bar{\nabla}=\nabla^{* \top}$. Hence, (3.5) implies

$$
\left\{\begin{array}{l}
\bar{\nabla}_{\widetilde{u}_{i}(p)} \widetilde{\gamma}^{\prime}=\left\{\frac{x^{\prime}(0)}{x}\left(\alpha_{i}^{\prime}(0), 0,0\right)\right\}^{\top}=\left\{\frac{x^{\prime}(0)}{x} \widetilde{u}_{i}(p)\right\}^{\top}=\frac{x^{\prime}(0)}{x} \widetilde{u}_{i}(p), \tag{3.6}\\
\bar{\nabla}_{\widetilde{u}_{i}(p)} \widetilde{N}=\left\{\frac{n_{1}(0)}{x}\left(\alpha_{i}^{\prime}(0), 0,0\right)\right\}^{\top}=\left\{\frac{n_{1}(0)}{x} \widetilde{u}_{i}(p)\right\}^{\top}=\frac{n_{1}(0)}{x} \widetilde{u}_{i}(p) .
\end{array}\right.
$$

Thus, from (3.4) and (3.6) we have at p

$$
\begin{equation*}
h_{i j}=-\left\langle\widetilde{u}_{j}(p), \bar{\nabla}_{\widetilde{u}_{i}(p)} \widetilde{N}\right\rangle=-\left\langle\widetilde{u}_{j}(p), \frac{n_{1}(0)}{x} \widetilde{u}_{i}(p)\right\rangle=-\frac{n_{1}(0)}{x} \delta_{i j} . \tag{3.7}
\end{equation*}
$$

Similarly, we have at p

$$
\left\{\begin{array}{l}
h_{(k-1+i)(k-1+j)}=\left\langle\bar{\nabla}_{\widetilde{v}_{i}(p)} \widetilde{v}_{j}, \tilde{N}\right\rangle=-\frac{n_{2}(0)}{y} \delta_{i j}, \tag{3.8}\\
h_{(2 k-2+i)(2 k-2+j)}=\left\langle\bar{\nabla}_{\widetilde{w}_{i}(p)} \widetilde{w}_{j}, \widetilde{N}\right\rangle=-\frac{n_{3}(0)}{z} \delta_{i j} .
\end{array}\right.
$$

And since $\nabla_{\gamma^{\prime}} \gamma^{\prime}=\left(x^{\prime \prime}(0), y^{\prime \prime}(0), z^{\prime \prime}(0)\right)^{\top}$ on S^{n+1} / G, we have at p

$$
\begin{align*}
h_{n n} & =\left\langle\bar{\nabla}_{\widetilde{\gamma}^{\prime}} \widetilde{\gamma}^{\prime}, \tilde{N}\right\rangle \tag{3.9}\\
& =\left\langle\left(x^{\prime \prime}(0) \frac{X}{x}, y^{\prime \prime}(0) \frac{Y}{y}, z^{\prime \prime}(0) \frac{Z}{z}\right)^{\top},\left(n_{1}(0) \frac{X}{x}, n_{2}(0) \frac{Y}{y}, n_{3}(0) \frac{Z}{z}\right)\right\rangle \\
& =x^{\prime \prime}(0) n_{1}(0)+y^{\prime \prime}(0) n_{2}(0)+z^{\prime \prime}(0) n_{3}(0) \\
& =\left\langle\left(x^{\prime \prime}(0), y^{\prime \prime}(0), z^{\prime \prime}(0)\right), N\right\rangle \\
& =\left\langle\nabla_{\gamma^{\prime}} \gamma^{\prime}, N\right\rangle=\kappa_{g}(\gamma),
\end{align*}
$$

where $\kappa_{g}(\gamma)$ is the geodesic curvature of γ at (x, y, z). Recall that
(3.10) $\quad \gamma(s)=(\sin r(s) \cos \theta(s), \sin r(s) \sin \theta(s), \cos r(s))=(x(s), y(s), z(s))$.

Let $(x, y, z)=\gamma(0)=(\sin r \cos \theta, \sin r \sin \theta, \cos r)$. Then

$$
\gamma^{\prime}(0)=\frac{d r}{d s} \frac{\partial}{\partial r}+\frac{d \theta}{d s} \frac{\partial}{\partial \theta},
$$

where $\partial / \partial r=(\cos r \cos \theta, \cos r \sin \theta,-\sin r)$ and $\partial / \partial \theta=\sin r(-\sin \theta, \cos \theta, 0)$.
Now, let $U=(\partial / \partial r) \times 1 / \sin r(\partial / \partial \theta)$ be a unit normal vector field on a neighborhood of (x, y, z) in S^{n+1} / G. Then we have

$$
\begin{align*}
N(0) & =\left(n_{1}(0), n_{2}(0), n_{3}(0)\right) \tag{3.11}\\
& =U \times T=U \times \gamma^{\prime}(0)=U \times\left(\frac{d r}{d s} \frac{\partial}{\partial r}+\frac{d \theta}{d s} \frac{\partial}{\partial \theta}\right) \\
& =\frac{1}{\sin r} \frac{d r}{d s} \frac{\partial}{\partial \theta}-\sin r \frac{d \theta}{d s} \frac{\partial}{\partial r} \\
& =-\sin r \frac{d \theta}{d s}(\cos r \cos \theta,-\sin r \cos r \sin \theta,-\sin r)+\frac{d r}{d s}(-\sin \theta, \cos \theta, 0) .
\end{align*}
$$

Therefore, from (3.7), (3.8), (3.9), (3.10) and (3.11) we obtain

$$
\left\{\begin{array}{l}
h_{11}=\cdots=h_{(k-1)(k-1)}=-\frac{n_{1}(0)}{x}=\cos r \frac{d \theta}{d s}+\frac{\tan \theta}{\sin r} \frac{d r}{d s}, \tag{3.12}\\
h_{k k}=\cdots=h_{(2 k-2)(2 k-2)}=-\frac{n_{2}(0)}{y}=\cos r \frac{d \theta}{d s}-\frac{\cot \theta}{\sin r} \frac{d r}{d s}, \\
h_{(2 k-1)(2 k-1)}=\cdots=h_{(n-1)(n-1)}=-\frac{n_{3}(0)}{z}=-\frac{\sin ^{2} r}{\cos r} \frac{d \theta}{d s}, \\
h_{n n}=\kappa_{g}(\gamma), \\
h_{i j}=0 \quad \text { if } i \neq j,
\end{array}\right.
$$

which completes the proof of Lemma 3.1.
Note. In Lemma 3.1, those all $h_{i i}$'s are called the principal curvatures of M^{n}. All principal curvatures $h_{i i}$'s are constant on each orbit from (3.12) and the vector fields e_{1}, \cdots, e_{n-1} are tangent to each orbit from (*) of Lemma 3.1. Hence we have

$$
\begin{equation*}
e_{j}\left(h_{11}\right)=\cdots=e_{j}\left(h_{n n}\right)=0, \quad \text { for all } j=1, \cdots, n-1 . \tag{3.13}
\end{equation*}
$$

From now on throughout this paper, $\left\{e_{A}\right\}$ is a local orthonormal frame field on S^{n+1} such as the frame field in Lemma 3.1.

Lemma 3.2. Let M^{n} be a G-invariant hypersurface in S^{n+1}. Then,
(1) all $h_{i j l}=0$ except when $\{i, j, l\}$ is a permutation of $\{i, i, n\}$,
(2) all $h_{i j l m}=0$ except when $\{i, j, l, m\}$ is a permutation of $\{i, i, j, j\}$.

Proof. (1) Since $h_{i j l}$ is symmetric in all indices, it suffices to show that $h_{i j l}=0$ if $i \leq j \leq l$ and $\{i, j, l\} \neq\{i, i, n\}$.
(1.a) Case 1. $j \neq i$: (2.4) together with Lemma 3.1 gives

$$
\begin{equation*}
h_{i j l}=e_{l}\left(h_{i j}\right)+\sum_{s} h_{s j} \omega_{s i}\left(e_{l}\right)+\sum_{s} h_{i s} \omega_{s j}\left(e_{l}\right)=\left(h_{j j}-h_{i i}\right) \omega_{j i}\left(e_{l}\right) . \tag{3.14}
\end{equation*}
$$

If $i, j \leq k-1$, then from (3.12) $h_{i i}=h_{j j}$. Hence, (3.14) implies $h_{i j l}=0$ for all l.

If $k \leq i, j \leq 2 k-2$ or $2 k-1 \leq i, j \leq n-1$, then also $h_{i j l}=0$ for all l.
And, if $i \leq k-1$ and $k \leq j<n$, then for all $l(i \leq j \leq l)$ we have

$$
\begin{equation*}
h_{i j l}=h_{l i j}=e_{j}\left(h_{l i}\right)+\left(h_{i i}-h_{l l}\right) \omega_{i l}\left(e_{j}\right)=\left(h_{i i}-h_{l l}\right)\left\langle\nabla_{e_{j}} e_{i}, e_{l}\right\rangle=0 \tag{3.15}
\end{equation*}
$$

since $\nabla_{e_{j}} e_{i}=0$ by the Koszul formula. In the similar cases, we also have $h_{i j l}=0$.
Now, from (2.4) and Lemma 3.1, we have

$$
\begin{equation*}
h_{m m l}=e_{l}\left(h_{m m}\right)+\sum_{s} h_{s m} \omega_{s m}\left(e_{l}\right)+\sum_{s} h_{m s} \omega_{s m}\left(e_{l}\right)=e_{l}\left(h_{m m}\right) . \tag{3.16}
\end{equation*}
$$

Hence, if $j=l=n$, then $h_{\text {inn }}=h_{n n i}=e_{i}\left(h_{n n}\right)=0$ from (3.13) since $i<j(=n)$.
(1.b) Case 2. $j=i$ and $l \neq n: \quad h_{i j l}=h_{i i l}=e_{l}\left(h_{i i}\right)=0$ from (3.13).

Therefore, (1.a) and (1.b) imply that (1) holds.
(2) (2.a) Case 1. i, j, l, m are distinct: Without loss of generality, it suffices to show that $h_{i j l n}=h_{i j n l}=0$ and $h_{i j l m}=0$ for all i, j, l, m such that $i, j, l, m<$ n.

By using (1) of this Lemma, we easily see that

$$
\begin{equation*}
h_{i j l n}=e_{n}\left(h_{i j l}\right)+\sum_{s} h_{s j l} \omega_{s i}\left(e_{n}\right)+\sum_{s} h_{i s l} \omega_{s j}\left(e_{n}\right)+\sum_{s} h_{i j s} \omega_{s l}\left(e_{n}\right)=0 \tag{3.17}
\end{equation*}
$$

since $i, j, l<n$ and i, j, l are distinct. And, from (2.5) and Lemma 3.1 we have

$$
\begin{equation*}
h_{i j n l}=h_{i j l n}+\sum_{s} h_{s j} R_{s i n l}+\sum_{s} h_{i s} R_{s j n l}=h_{j j} R_{j i n l}+h_{i i} R_{i j n l}=0 . \tag{3.18}
\end{equation*}
$$

If $i, j, l, m<n$, then from (1) of this Lemma we can easily see

$$
\begin{equation*}
h_{i j l m}=e_{m}\left(h_{i j l}\right)+\sum_{s}\left\{h_{s j l} \omega_{s j}\left(e_{m}\right)+h_{i s l} \omega_{s j}\left(e_{m}\right)+h_{i j s} \omega_{s l}\left(e_{m}\right)\right\}=0 \tag{3.19}
\end{equation*}
$$

From (3.17), (3.18) and (3.19), we complete the proof of (2.a)
(2.b) Case 2. $j \neq l:$ Let us show that $h_{i i j l}=h_{j l i i}=h_{j j j l}=h_{l j j j}=0$.

First, we show that $h_{i i j l}=h_{j l i i}=0$. Since $j \neq l$, one of $\{j, l\}$ is not n. And

$$
\begin{equation*}
h_{i i j l}=h_{i i l j}+\sum_{s} h_{s i} R_{s i j l}+\sum_{s} h_{i s} R_{s i j l}=h_{i i l j}+2 h_{i i} R_{i i j l}=h_{i i l j} . \tag{3.20}
\end{equation*}
$$

Hence, we may assume $l \neq n$. So, $e_{l}\left(h_{i i j}\right)=0$. Because $h_{i i j}=e_{j}\left(h_{i i}\right)$ is also constant on each orbit since $h_{i i}$ is constant on each orbit. Therefore, we have

$$
\begin{align*}
h_{i i j l} & =e_{l}\left(h_{i i j}\right)+\sum_{s} h_{s i j} \omega_{s i}\left(e_{l}\right)+\sum_{s} h_{i s j} \omega_{s i}\left(e_{l}\right)+\sum_{s} h_{i i s} \omega_{s j}\left(e_{l}\right) \tag{i}\\
& =2 h_{j i j} \omega_{j i}\left(e_{l}\right)-h_{i i n} \omega_{n j}\left(e_{l}\right)=0
\end{align*}
$$

since $h_{j i j}=0$ if $i \neq n$ and $\omega_{n j}\left(e_{l}\right)=\left\langle\nabla_{e_{l}} e_{n}, e_{j}\right\rangle=0$ from the first of (3.6). And since $j \neq l$, from (2.5), Lemma 3.1 and (i) we also have

$$
\begin{align*}
h_{j l i i}=h_{i j l i} & =h_{i j i l}+\sum_{s} h_{s j} R_{s i l i}+\sum_{s} h_{i s} R_{s j l i} \tag{ii}\\
& =h_{i i j l}+h_{j j} R_{j i l i}+h_{i i} R_{i j l i}=0 .
\end{align*}
$$

Second, we show that $h_{j j j l}=h_{l j j j}=0$. From (2.4), we have

$$
\begin{equation*}
h_{j j j l}=e_{l}\left(h_{j j j}\right)+\sum_{s} h_{s j j} \omega_{s j}\left(e_{l}\right)+\sum_{s} h_{j s j} \omega_{s j}\left(e_{l}\right)+\sum_{s} h_{j j s} \omega_{s j}\left(e_{l}\right) . \tag{3.21}
\end{equation*}
$$

Hence, (3.21) and (1) of this Lemma give

$$
h_{j j j l}= \begin{cases}3 h_{j j n} \omega_{n j}\left(e_{l}\right) & \text { if } j \neq n, \tag{3.22}\\ e_{l}\left(h_{n n n}\right) & \text { if } j=n .\end{cases}
$$

Here,

$$
\begin{cases}\omega_{n j}\left(e_{l}\right)= \begin{cases}\left\langle\nabla_{e_{l}} e_{n}, e_{j}\right\rangle=0 \text { from }(3.6) & \text { if } l \neq n \\ -\left\langle e_{n}, \nabla_{e_{n}} e_{j}\right\rangle=0 \text { from }\left(^{*}\right) \text { in Lemma } 3.1 & \text { if } l=n\end{cases} \tag{3.23}\\ e_{l}\left(h_{n n n}\right)=0 \text { since } h_{n n n} \text { is also constant on each orbit }(l \neq j=n)\end{cases}
$$

From (3.21), (3.22) and (3.23), we have

$$
\begin{equation*}
h_{j j j l}=0 \tag{iii}
\end{equation*}
$$

and
(iiii) $h_{l j j j}=h_{j j l j}=h_{j j j l}+\sum_{s} h_{s j} R_{s j l j}+\sum_{s} h_{j s} R_{s j l j}=h_{j j j l}+2 h_{j j} R_{j j l j}=0$.
From (i), (ii), (iii) and (iiii), we complete the proof of (2.b) and Lemma 3.2.
4. G-invariant Minimal Hypersurface in S^{5}.

From now on, we assume that $G \simeq O(2) \times O(2) \times O(2)$ and M^{4} is a closed
G-invariant minimal hypersurface with constant scalar curvature in S^{5}. Then by differentiating $\sum_{i} h_{i i}=0$ and $\sum_{i} h_{i i}^{2}=S$ with respect to e_{4} respectively, we have

$$
\left\{\begin{array}{l}
h_{114}+h_{224}+h_{334}+h_{444}=0 \tag{4.1}\\
h_{11} h_{114}+h_{22} h_{224}+h_{33} h_{334}+h_{44} h_{444}=0
\end{array}\right.
$$

By differentiating (4.1) with respect to e_{4} respectively, we have

$$
\left\{\begin{array}{l}
h_{1144}+h_{2244}+h_{3344}+h_{4444}=0 \tag{4.2}\\
\sum_{i} h_{i i} h_{i i 44}+\sum_{i} h_{i i 4}^{2}=0
\end{array}\right.
$$

Since $e_{4}\left(h_{i i 44}\right)=h_{i i 444}$ from (2.4), by differentiating (4.2) with respect to e_{4} respectively, we also have

$$
\left\{\begin{array}{l}
h_{11444}+h_{22444}+h_{33444}+h_{44444}=0, \tag{4.3}\\
\sum_{i} h_{i i} h_{i i 444}+3 \sum_{i} h_{i i 4} h_{i i 44}=0
\end{array}\right.
$$

From (2.7), we have

$$
\begin{equation*}
h_{i i 11}+h_{i i 22}+h_{i i 33}+h_{i i 44}=(4-S) h_{i i} . \tag{4.4}
\end{equation*}
$$

Since S is constant, (2.8) and Lemma 3.2 give

$$
\begin{equation*}
3 \sum_{i \neq 4} h_{i i 4}^{2}+h_{444}^{2}=S(S-4) . \tag{4.5}
\end{equation*}
$$

Now, by differentiating it once and twice with respect to e_{4} respectively, we have

$$
\left\{\begin{array}{l}
3 \sum_{i \neq 4} h_{i i 4} h_{i i 44}+h_{444} h_{4444}=0, \tag{4.6}\\
3 \sum_{i \neq 4} h_{i i 4} h_{i i 444}+h_{444} h_{44444}+3 \sum_{i \neq 4} h_{i i 44}^{2}+h_{4444}^{2}=0
\end{array}\right.
$$

Moreover, if $i \neq 4$, from (2.4) we know

$$
\begin{cases}h_{i i 4} & =h_{i 4 i}=\left(h_{44}-h_{i i}\right) \omega_{4 i}\left(e_{i}\right), \tag{4.7}\\ h_{i i i i} & =3 h_{i i 4} \omega_{4 i}\left(e_{i}\right) \\ h_{44 i i} & =\left(h_{444}-2 h_{i i 4}\right) \omega_{4 i}\left(e_{i}\right)\end{cases}
$$

And, if $i, j \neq 4$ and $i \neq j$, then

$$
\begin{equation*}
h_{i i j j}=e_{j}\left(h_{i i j}\right)+\sum_{s}\left\{h_{s i j} \omega_{s i}\left(e_{j}\right)+h_{i s j} \omega_{s i}\left(e_{j}\right)+h_{i i s} \omega_{s j}\left(e_{j}\right)\right\}=h_{i i 4} \omega_{4 j}\left(e_{j}\right) \tag{4.8}
\end{equation*}
$$

The following (4.9), (4.10) and (4.11) are needed to prove Lemma 4.1.

If $i \neq 4$, then (2.4) and Lemma 3.2 give

$$
\left\{\begin{align*}
e_{4}\left(h_{44 i i}\right)= & h_{44 i i 4}-\sum_{s}\left\{h_{s 4 i i} \omega_{s 4}\left(e_{4}\right)+h_{4 s i i} \omega_{s 4}\left(e_{4}\right)\right. \tag{4.9}\\
& \left.+h_{44 s i} \omega_{s i}\left(e_{4}\right)+h_{44 i s} \omega_{s i}\left(e_{4}\right)\right\}=h_{44 i i 4} \\
h_{444 i i}= & e_{i}\left(h_{444 i}\right)+\sum_{s}\left\{h_{s 44 i} \omega_{s 4}\left(e_{i}\right)+h_{4 s 4 i} \omega_{s 4}\left(e_{i}\right)\right. \\
& \left.+h_{44 s i} \omega_{s 4}\left(e_{i}\right)+h_{444 s} \omega_{s i}\left(e_{i}\right)\right\}=\left(h_{4444}-3 h_{44 i i}\right) \omega_{4 i}\left(e_{i}\right)
\end{align*}\right.
$$

Furthermore, if $i \neq 4$, then (2.2) and (2.5), (4.7) give

$$
\left\{\begin{array}{l}
R_{i 4 i 4}=K_{i 4 i 4}+h_{i i} h_{44}=1+h_{i i} h_{44}=-R_{4 i i 4}, \tag{4.10}\\
\left(h_{44 i i}-h_{i i 44}\right) \omega_{4 i}\left(e_{i}\right)=\left(h_{44}-h_{i i}\right)\left(1+h_{44} h_{i i}\right) \omega_{4 i}\left(e_{i}\right) \\
=h_{i i 4}\left(1+h_{44} h_{i i}\right)
\end{array}\right.
$$

respectively. Here $h_{44 i 4}=h_{444 i}=0$ by Lemma 3.2. And so (2.5) and (4.10) give

$$
\begin{align*}
& h_{44 i 4 i}=e_{i}\left(h_{44 i 4}\right)+h_{i 4 i 4} \omega_{i 4}\left(e_{i}\right)+h_{4 i i 4} \omega_{i 4}\left(e_{i}\right)+h_{4444} \omega_{4 i}\left(e_{i}\right)+h_{44 i i} \omega_{i 4}\left(e_{i}\right) \tag{4.11}\\
& =e_{i}\left(h_{444 i}\right)-h_{i i 44} \omega_{4 i}\left(e_{i}\right)-h_{i i 44} \omega_{4 i}\left(e_{i}\right)+h_{4444} \omega_{4 i}\left(e_{i}\right)+h_{44 i i} \omega_{i 4}\left(e_{i}\right) \\
& =h_{444 i i}-h_{i 44 i} \omega_{i 4}\left(e_{i}\right)-h_{4 i 4 i} \omega_{i 4}\left(e_{i}\right)-h_{44 i i} \omega_{i 4}\left(e_{i}\right)-h_{4444} \omega_{4 i}\left(e_{i}\right) \\
& \quad \quad-h_{i i 44} \omega_{4 i}\left(e_{i}\right)-h_{i i 44} \omega_{4 i}\left(e_{i}\right)+h_{4444} \omega_{4 i}\left(e_{i}\right)+h_{44 i i} \omega_{i 4}\left(e_{i}\right) \\
& =h_{444 i i}+2\left(h_{44 i i}-h_{i i 44}\right) \omega_{4 i}\left(e_{i}\right) \\
& =h_{444 i i}+2 h_{i i 4}\left(1+h_{44} h_{i i}\right) .
\end{align*}
$$

Hence, we have the following lemma that is needed to prove our Theorem.
Lemma 4.1. If $i \neq 4$, then

$$
\begin{equation*}
h_{i i 444}=h_{444 i i}+\left(5+6 h_{i i} h_{44}-h_{44}^{2}\right) h_{i i 4}-\left(2+3 h_{i i} h_{44}-h_{i i}^{2}\right) h_{444} . \tag{4.12}
\end{equation*}
$$

Proof. By using (4.9), (4.10) and (4.11), we have

$$
\begin{aligned}
h_{i i 444}= & e_{4}\left(h_{i i 44}\right)+\sum_{s}\left\{h_{s i 44} \omega_{s i}\left(e_{4}\right)+h_{i s 44} \omega_{s i}\left(e_{4}\right)+h_{i i s 4} \omega_{s 4}\left(e_{4}\right)+h_{i i 4 s} \omega_{s 4}\left(e_{4}\right)\right\} \\
= & e_{4}\left(h_{i i 44}\right) \\
= & e_{4}\left\{h_{44 i i}+\left(h_{i i}-h_{44}\right)\left(1+h_{i i} h_{44}\right)\right\} \\
= & h_{44 i i 4}+\left(h_{i i 4}-h_{444}\right)\left(1+h_{i i} h_{44}\right)+\left(h_{i i}-h_{44}\right)\left(h_{i i 4} h_{44}+h_{i i} h_{444}\right) \\
= & h_{44 i 4 i}+h_{i 4 i} R_{i 4 i 4}+h_{4 i i} R_{i 4 i 4}+h_{444} R_{4 i i 4} \\
& \quad+\left(h_{i i 4}-h_{444}\right)\left(1+h_{i i} h_{44}\right)+\left(h_{i i}-h_{44}\right)\left(h_{i i 4} h_{44}+h_{i i} h_{444}\right) \\
= & h_{444 i i}+2 h_{i i 4}\left(1+h_{44} h_{i i}\right)+\left(2 h_{i i 4}-h_{444}\right) R_{i 4 i 4} \\
\quad & \quad+\left(h_{i i 4}-h_{444}\right)\left(1+h_{i i} h_{44}\right)+\left(h_{i i}-h_{44}\right)\left(h_{i i 4} h_{44}+h_{i i} h_{444}\right) \\
= & h_{444 i i}+\left(5 h_{i i 4}-2 h_{444}\right)\left(1+h_{i i} h_{44}\right)+\left(h_{i i} h_{44}-h_{44}^{2}\right) h_{i i 4}+\left(h_{i i}^{2}-h_{i i} h_{44}\right) h_{444} \\
= & h_{444 i i}+\left(5+6 h_{i i} h_{44}-h_{44}^{2}\right) h_{i i 4}-\left(2+3 h_{i i} h_{44}-h_{i i}^{2}\right) h_{444}
\end{aligned}
$$

and it completes the proof of Lemma 4.1.
For the sake of simplicity, we sometimes let $h_{i i}=\lambda_{i}$ from now on throughout this paper. To prove our Theorem we need another lemmas.

Lemma 4.2. Suppose $h_{i i}=h_{44}=\lambda$ at some point p for $i=1,2$ or 3 . Then,

$$
\begin{equation*}
S=\frac{12 \lambda^{4}+4 \lambda^{2}}{5 \lambda^{2}-1} . \tag{4.13}
\end{equation*}
$$

Proof. Without loss of generality, we can assume $h_{33}=h_{44}=\lambda$ at some point p. Then (4.7) implies $h_{334}(p)=0$. Together with (4.7) and (4.8), it implies

$$
\begin{equation*}
h_{3311}=h_{3322}=h_{3333}=0, \quad \text { at } p . \tag{4.14}
\end{equation*}
$$

Hence, (4.4) and (4.14) imply

$$
\begin{equation*}
h_{3344}=(4-S) h_{33}, \quad \text { at } p \tag{4.15}
\end{equation*}
$$

and (2.5) implies

$$
\begin{equation*}
h_{4433}=h_{3344}+\left(h_{44}-h_{33}\right)\left(1+h_{44} h_{33}\right)=h_{3344}, \quad \text { at } p \tag{4.16}
\end{equation*}
$$

In the equation (2.9), $\sum_{i, j} h_{i j 3}^{2}=0$ at p. Hence, we have

$$
\begin{equation*}
h_{11} h_{1133}+h_{22} h_{2233}+h_{33} h_{3333}+h_{44} h_{4433}=0, \quad \text { at } p . \tag{4.17}
\end{equation*}
$$

By using (2.5) and (4.14) we know, at p

$$
\left\{\begin{array}{l}
h_{1133}=h_{3311}+\left(h_{11}-\lambda\right)\left(1+h_{11} \lambda\right)=\left(\lambda_{1}-\lambda\right)\left(1+\lambda_{1} \lambda\right), \tag{4.18}\\
h_{2233}=h_{3322}+\left(h_{22}-\lambda\right)\left(1+h_{22} \lambda\right)=\left(\lambda_{2}-\lambda\right)\left(1+\lambda_{2} \lambda\right) .
\end{array}\right.
$$

Hence, (4.17) and (4.18) imply

$$
\begin{equation*}
\lambda_{1}\left(\lambda_{1}-\lambda\right)\left(1+\lambda_{1} \lambda\right)+\lambda_{2}\left(\lambda_{2}-\lambda\right)\left(1+\lambda_{2} \lambda\right)+\lambda(4-S) \lambda=0 . \tag{4.19}
\end{equation*}
$$

Here, since

$$
\left\{\begin{array}{l}
\lambda_{1}+\lambda_{2}+2 \lambda=0, \quad \lambda_{1}^{2}+\lambda_{2}^{2}+2 \lambda^{2}=S, \quad \lambda_{1} \lambda_{2}=3 \lambda^{2}-\frac{S}{2}, \tag{4.20}\\
\lambda_{1}^{3}+\lambda_{2}^{3}=\left(\lambda_{1}^{2}+\lambda_{2}^{2}-\lambda_{1} \lambda_{2}\right)\left(\lambda_{1}+\lambda_{2}\right)=10 \lambda^{3}-3 S \lambda,
\end{array}\right.
$$

(4.19) becomes

$$
S+4 \lambda^{2}+12 \lambda^{4}-5 S \lambda^{2}=0
$$

and so,

$$
S=\frac{12 \lambda^{4}+4 \lambda^{2}}{5 \lambda^{2}-1}
$$

It completes the proof of Lemma 4.2.
The following Lemma 4.3 and Lemma 5.1 are proved in the same methods as in our early paper [7].
Lemma 4.3. If M^{4} has 2 distinct principal curvatures at some point, then $S=4$.

Proof. Suppose M^{4} has 2 distinct principal curvatures at some point, say, p. Without loss of generality, we can assume either one of the following three cases for some $\lambda \neq 0$:

Case 1. Suppose $h_{22}=h_{33}=h_{44}=\lambda$ and $h_{11}=-3 \lambda$ at p. Then

$$
\begin{equation*}
S=h_{11}^{2}+h_{22}^{2}+h_{33}^{2}+h_{44}^{2}=12 \lambda^{2} . \tag{4.21}
\end{equation*}
$$

Hence, (4.13) and (4.21) imply $S=4$, i.e., $M^{4}=S^{1}(\sqrt{1 / 4}) \times S^{3}(\sqrt{3 / 4})$.
Case 2. Suppose $h_{11}=h_{22}=-\lambda, h_{33}=h_{44}=\lambda$ at p. Then

$$
\begin{equation*}
S=h_{11}^{2}+h_{22}^{2}+h_{33}^{2}+h_{44}^{2}=4 \lambda^{2} . \tag{4.22}
\end{equation*}
$$

Hence, (4.13) and (4.22) imply $S=4$, i.e., $M^{4}=S^{2}(\sqrt{1 / 2}) \times S^{2}(\sqrt{1 / 2})$. But, it is not G-invariant.

Case 3. Suppose $h_{11}=h_{22}=h_{33}=\lambda$ and $h_{44}=-3 \lambda$ at p. Then from (3.12), we have at p

$$
\begin{equation*}
\cos r \frac{d \theta}{d s}+\frac{\tan \theta}{\sin r} \frac{d r}{d s}=\cos r \frac{d \theta}{d s}-\frac{\cot \theta}{\sin r} \frac{d r}{d s}=-\frac{\sin ^{2} r}{\cos r} \frac{d \theta}{d s} \tag{4.23}
\end{equation*}
$$

From (4.23), we have

$$
\begin{equation*}
\frac{d r}{d s}=0 \quad \text { and } \quad \frac{d \theta}{d s}=0 \tag{4.24}
\end{equation*}
$$

which means that $h_{11}=h_{22}=h_{33}=h_{44}=\lambda=0$ at p. It is contrary to the hypothesis and completes the proof of Lemma 4.3.

Lemma 4.4. If $S>4$ and $i=1,2,3$, then
(1) for each i, there exists a point q_{i} in M such that $h_{i i}\left(q_{i}\right)=0$ and
(2) for all $i, h_{44} \neq h_{i i}$ anywhere.

Proof. (1) Suppose that the conclusion is not valid. Without loss of generality, we can assume that $h_{33}>0$ everywhere. Consider a point p_{0}, such that

$$
\begin{equation*}
h_{33}\left(p_{0}\right)=\min _{M^{4}} h_{33}>0 \tag{4.25}
\end{equation*}
$$

Then, due to the maximal principle, we have

$$
\begin{equation*}
e_{4}\left(h_{33}\right)\left(p_{0}\right)=h_{334}\left(p_{0}\right)=0 \quad \text { and } \quad H e s s . h_{33}\left(e_{4}, e_{4}\right)\left(p_{0}\right) \geq 0 \tag{4.26}
\end{equation*}
$$

Now, we have
(4.27) Hess. $h_{33}\left(e_{4}, e_{4}\right)=\left(e_{4} e_{4}-\nabla_{e_{4}} e_{4}\right)\left(h_{33}\right)=h_{3344}-\sum_{s} \omega_{4 s}\left(e_{4}\right) h_{33 s}=h_{3344}$.

Here, since $h_{334}\left(p_{0}\right)=0$, by using (4.7) and (4.8) we have at p_{0}

$$
h_{3311}=h_{3322}=h_{3333}=0
$$

and so,

$$
\begin{equation*}
h_{3344}=(4-S) h_{33} . \tag{4.28}
\end{equation*}
$$

From (4.26), (4.27) and (4.28), we have

$$
h_{3344}=(4-S) h_{33}\left(p_{0}\right) \geq 0
$$

which is contrary to the hypotheses that $S>4$ and $h_{33}\left(p_{0}\right)>0$.
(2) Suppose the conclusion is not valid. Without loss of generality, we can assume that $h_{33}=h_{44}=\lambda$ at some point p. Then since $S>4$, it follows h_{11}, h_{22}, λ are distinct at p by Lemma 4.3 and $\lambda \neq 0$ by Lemma 4.2. From now on, all computations are performed at p. (4.7) gives $h_{334}=0$. From (4.2), we have

$$
\left\{\begin{array}{l}
h_{1144}+h_{2244}+h_{3344}+h_{4444}=0, \tag{4.29}\\
\lambda_{1} h_{1144}+\lambda_{2} h_{2244}+\lambda h_{3344}+\lambda h_{4444}=-h_{114}^{2}-h_{224}^{2}-h_{444}^{2}
\end{array}\right.
$$

It follows that

$$
\begin{equation*}
\left(\lambda-\lambda_{1}\right) h_{1144}+\left(\lambda-\lambda_{2}\right) h_{2244}=h_{114}^{2}+h_{224}^{2}+h_{444}^{2} \tag{4.30}
\end{equation*}
$$

Here, from (2.5) and (4.7) we have

$$
\left\{\begin{align*}
h_{1144} & =h_{4411}+\left(h_{11}-h_{44}\right)\left(1+h_{11} h_{44}\right) \tag{4.31}\\
& =\left(h_{444}-2 h_{114}\right) \omega_{41}\left(e_{1}\right)+\left(\lambda_{1}-\lambda\right)\left(1+\lambda_{1} \lambda\right) \\
& =\left(h_{444}-2 h_{114}\right) h_{114} /\left(\lambda-\lambda_{1}\right)+\left(\lambda_{1}-\lambda\right)\left(1+\lambda_{1} \lambda\right) \\
h_{2244} & =h_{4422}+\left(h_{22}-h_{44}\right)\left(1+h_{22} h_{44}\right) \\
& =\left(h_{444}-2 h_{224}\right) \omega_{42}\left(e_{2}\right)+\left(\lambda_{2}-\lambda\right)\left(1+\lambda_{2} \lambda\right) \\
& =\left(h_{444}-2 h_{224}\right) h_{224} /\left(\lambda-\lambda_{2}\right)+\left(\lambda_{2}-\lambda\right)\left(1+\lambda_{2} \lambda\right)
\end{align*}\right.
$$

Hence, by using (4.1) and (4.31) we have

$$
\begin{aligned}
& \text { LHS of }(4.30)=\left(\lambda-\lambda_{1}\right) h_{1144}+\left(\lambda-\lambda_{2}\right) h_{2244} \\
& =h_{444}\left(h_{114}+h_{224}\right)-2 h_{114}^{2}-2 h_{224}^{2}-\left\{\left(\lambda_{1}-\lambda\right)^{2}\left(1+\lambda_{1} \lambda\right)+\left(\lambda_{2}-\lambda\right)^{2}\left(1+\lambda_{2} \lambda\right)\right\} \\
& =-h_{444}^{2}-2 h_{114}^{2}-2 h_{224}^{2}-\left\{\left(\lambda_{1}-\lambda\right)^{2}\left(1+\lambda_{1} \lambda\right)+\left(\lambda_{2}-\lambda\right)^{2}\left(1+\lambda_{2} \lambda\right)\right\} \\
& =-h_{444}^{2}-2 h_{114}^{2}-2 h_{224}^{2},
\end{aligned}
$$

since

$$
\begin{aligned}
& \left(\lambda_{1}-\lambda\right)^{2}\left(1+\lambda_{1} \lambda\right)+\left(\lambda_{2}-\lambda\right)^{2}\left(1+\lambda_{2} \lambda\right) \\
& \quad=\lambda_{1}^{2}+\lambda_{2}^{2}+2 \lambda^{2}-2\left(\lambda_{1}+\lambda_{2}\right) \lambda+\left(\lambda_{1}^{3}+\lambda_{2}^{3}\right) \lambda-2\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) \lambda^{2}+\left(\lambda_{1}+\lambda_{2}\right) \lambda^{3} \\
& \quad=S+4 \lambda^{2}+12 \lambda^{4}-5 S \lambda^{2}=0
\end{aligned}
$$

by using (4.20) and Lemma 4.2. Hence, from (4.30) and (4.5) we obtain

$$
0=3 h_{114}^{2}+3 h_{224}^{2}+2 h_{444}^{2}=S(S-4)+h_{444}^{2} .
$$

It contradicts to the hypothesis that $S>4$ and completes the proof.

5. Proof of Our Theorem

From Lemma 4.3, we know that if $S \leq 4$, then $S=4$. Moreover, Lemma 4.3 says that if $S>4$, then M^{4} does not have 2 distinct principal curvatures anywhere. Therefore, if $S>4$, then M^{4} must have simple principal curvatures everywhere or 3 distinct principal curvatures at some point. To prove our Theorem, it suffices to show that if $S>4$, then M^{4} does not have simple principal curvatures everywhere and 3 distinct principal curvatures anywhere.

Lemma 5.1. If $S>4$, then M^{4} does not have simple principal curvatures everywhere.

Proof. Suppose that M^{4} has only simple principal curvatures everywhere. Then since all principal curvatures $h_{i i}$'s are constant on each orbit, without loss of generality we can assume everywhere either one of the following three cases:
(1) $h_{11}<h_{22}<h_{33}<h_{44}$,
(2) $h_{11}<h_{22}<h_{44}<h_{33}$,
(3) $h_{44}<h_{11}<h_{22}<h_{33}$.

Now, from (1) of Lemma 4.4 we know there exist points q_{1} and q_{3} in M^{4} such that $h_{11}\left(q_{1}\right)=0$ and $h_{33}\left(q_{3}\right)=0$ respectively. Hence the above each case is contrary to the fact that

$$
\begin{aligned}
& h_{11}\left(q_{1}\right)+h_{22}\left(q_{1}\right)+h_{33}\left(q_{1}\right)+h_{44}\left(q_{1}\right)=0 \text { or } \\
& h_{11}\left(q_{3}\right)+h_{22}\left(q_{3}\right)+h_{33}\left(q_{3}\right)+h_{44}\left(q_{3}\right)=0 .
\end{aligned}
$$

Therefore, M^{4} does not have simple principal curvatures everywhere.
Lemma 5.2. If $S>4$, then M^{4} does not have 3 distinct principal curvatures anywhere.

Proof. Suppose that M^{4} has 3 distinct principal curvatures at some point p. Then by (2) of Lemma 4.4, without loss of generality we may assume that $\lambda_{1}=\lambda_{2}=\lambda$ and $\lambda, \lambda_{3}, \lambda_{4}$ are distinct at p. All computations are performed at p. From (4.1), we have

$$
\left\{\begin{array}{l}
h_{114}+h_{224}+h_{334}+h_{444}=0 \tag{5.1}\\
\lambda h_{114}+\lambda h_{224}+\lambda_{3} h_{334}+\lambda_{4} h_{444}=0
\end{array}\right.
$$

Let $h_{114}=b h_{224}$ for some real number b. Then, (5.1) becomes

$$
\left\{\begin{array}{l}
(1+b) h_{224}+h_{334}+h_{444}=0, \tag{5.2}\\
(1+b) \lambda h_{224}+\lambda_{3} h_{334}+\lambda_{4} h_{444}=0
\end{array}\right.
$$

It follows that

$$
\left\{\begin{array}{lll}
h_{114}=\left(\lambda_{4}-\lambda_{3}\right) a b, & h_{224}=\left(\lambda_{4}-\lambda_{3}\right) a, \tag{5.3}\\
h_{334}=\left(\lambda-\lambda_{4}\right) a(1+b), & h_{444}=\left(\lambda_{3}-\lambda\right) a(1+b)
\end{array}\right.
$$

for some real number a. Here since $S>4, a \neq 0$ from (4.5).
Now (2.5) implies

$$
\begin{equation*}
h_{3311}-h_{1133}=\left(\lambda_{3}-\lambda\right)\left(1+\lambda_{3} \lambda\right)=h_{3322}-h_{2233} \tag{5.4}
\end{equation*}
$$

And, (4.8), (4.7) and (5.3) imply

$$
\left\{\begin{align*}
h_{3311}-h_{1133} & =h_{334} \omega_{41}\left(e_{1}\right)-h_{114} \omega_{43}\left(e_{3}\right) \tag{5.5}\\
& =h_{334} h_{114} /\left(\lambda_{4}-\lambda\right)-h_{114} h_{334} /\left(\lambda_{4}-\lambda_{3}\right) \\
& =\left(\lambda_{3}-\lambda\right) a^{2} b(1+b) \\
h_{3322}-h_{2233} & =h_{334} \omega_{42}\left(e_{2}\right)-h_{224} \omega_{43}\left(e_{3}\right)=\left(\lambda_{3}-\lambda\right) a^{2}(1+b)
\end{align*}\right.
$$

Hence, from (5.4) and (5.5) we get

$$
\begin{equation*}
\left(\lambda_{3}-\lambda\right) a^{2} b(1+b)=\left(\lambda_{3}-\lambda\right)\left(1+\lambda_{3} \lambda\right)=\left(\lambda_{3}-\lambda\right) a^{2}(1+b) \tag{5.6}
\end{equation*}
$$

and so,

$$
\begin{equation*}
b=-1 \quad \text { or } \quad b=1 \tag{5.7}
\end{equation*}
$$

To prove our Lemma 5.2, it therefore suffices to show that $b \neq-1$ and $b \neq 1$. Case 1. In the case $b=-1: \quad(5.6)$ implies $\left(\lambda_{3}-\lambda\right)\left(1+\lambda_{3} \lambda\right)=0$, i.e.,

$$
\begin{equation*}
\lambda \neq 0, \quad \lambda_{3}=\frac{-1}{\lambda} \quad \text { and } \quad \lambda_{4}=\frac{1}{\lambda}-2 \lambda . \tag{5.8}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
S=2 \lambda^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}=6 \lambda^{2}+\frac{2}{\lambda^{2}}-4 \tag{5.9}
\end{equation*}
$$

From (5.3) and (4.7), we have
(5.10) $\quad h_{114}=-h_{224}, \quad h_{334}=h_{444}=0, \quad \omega_{41}\left(e_{1}\right)=-\omega_{42}\left(e_{2}\right), \quad \omega_{43}\left(e_{3}\right)=0$.

Hence, from (4.5) and (5.10) we have

$$
\begin{equation*}
6 h_{114}^{2}=S(S-4) \tag{5.11}
\end{equation*}
$$

Let $h_{114} \omega_{41}\left(e_{1}\right)=c$. Then, by using (4.7) and (5.8) we have

$$
\begin{equation*}
c\left(\lambda_{4}-\lambda\right)=h_{114}^{2} \quad \text { and so } \quad c=\frac{h_{114}^{2}}{\lambda_{4}-\lambda}=\frac{h_{114}^{2} \lambda}{1-3 \lambda^{2}} . \tag{5.12}
\end{equation*}
$$

Moreover, by using (4.7), (4.8), (4.4) and (5.10) we also have

$$
\left\{\begin{array}{llll}
h_{1111}=3 c, & h_{1122}=-c, & h_{1133}=0, & h_{1144}=(4-S) \lambda-2 c \tag{5.13}\\
h_{2211}=-c, & h_{2222}=3 c, & h_{2233}=0, & h_{2244}=(4-S) \lambda-2 c \\
h_{3311}=0, & h_{3322}=0, & h_{3333}=0, & h_{3344}=(4-S) \lambda_{3} \\
h_{4411}=-2 c, & h_{4422}=-2 c, & h_{4433}=0, & h_{4444}=(4-S) \lambda_{4}+4 c .
\end{array}\right.
$$

Now, we can not draw anymore here and have to appeal to covariant derivatives of h up to the third order.

We compute $6 h_{114} h_{11444}$ in Step 1 and Step 2 respectively by using different ways, and show that in Step 3 they are not equal mutually to prove $b \neq-1$.

Step 1. First we compute $6 h_{114} h_{11444}$ by using one way. From (4.9), (4.12) and (5.10), we have

$$
\begin{equation*}
h_{44433}=0, \quad h_{33444}=h_{44433}, \quad \text { and so }, \quad h_{33444}=0 \tag{5.14}
\end{equation*}
$$

Since $h_{1144}=h_{2244}$ from (5.13), by using (4.3), (5.10) and (5.14) we have

$$
\left\{\begin{array}{l}
h_{11444}+h_{22444}+h_{44444}=0, \tag{5.15}\\
\lambda h_{11444}+\lambda h_{22444}+\lambda_{4} h_{44444}=0
\end{array}\right.
$$

If follows that

$$
\begin{equation*}
h_{11444}=-h_{22444} \quad \text { and } \quad h_{44444}=0 . \tag{5.16}
\end{equation*}
$$

Hence, from (4.6), (5.10) and (5.16) we obtain

$$
\begin{equation*}
6 h_{114} h_{11444}=-6 h_{1144}^{2}-3 h_{3344}^{2}-h_{4444}^{2} . \tag{5.17}
\end{equation*}
$$

Step 2. Second we compute $6 h_{114} h_{11444}$ in another way. From (4.12), (4.9) and (5.10), we also have

$$
\begin{align*}
6 h_{114} h_{11444} & =6 h_{114} h_{44411}+6\left(5+6 h_{11} h_{44}-h_{44}^{2}\right) h_{114}^{2} \tag{5.18}\\
& =6\left(h_{4444}-3 h_{4411}\right) c+6\left(5+6 \lambda \lambda_{4}-\lambda_{4}^{2}\right) h_{114}^{2} .
\end{align*}
$$

Step 3. We must show that $(5.17) \neq(5.18)$. Suppose $(5.17)=(5.18)$. Then
(5.19) $6 h_{1144}^{2}+3 h_{3344}^{2}+h_{4444}^{2}+6\left(h_{4444}-3 h_{4411}\right) c+6\left(5+6 \lambda \lambda_{4}-\lambda_{4}^{2}\right) h_{114}^{2}=0$.

By using (5.11), (5.13) and the fact that $S-4 \neq 0$, (5.19) becomes

$$
\begin{equation*}
(S-4)\left(6 \lambda^{2}+3 \lambda_{3}^{2}+\lambda_{4}^{2}\right)+\left(24 \lambda-14 \lambda_{4}\right) c+S\left(5+6 \lambda \lambda_{4}-\lambda_{4}^{2}\right)+\frac{100 c^{2}}{S-4}=0 \tag{5.20}
\end{equation*}
$$

Let $\lambda^{2}=t$. Then, by using (5.8), (5.9), (5.11) and (5.12) we have

$$
\left\{\begin{array}{l}
S=6 t+\frac{2}{t}-4, \quad(S-4) t=2(3 t-1)(t-1) \tag{5.21}\\
c=\frac{h_{114}^{2}}{\lambda_{4}-\lambda}=\frac{S(S-4) \lambda}{6(1-3 t)}, \quad \lambda c=\frac{S(S-4) t}{6(1-3 t)}, \\
6 \lambda^{2}+3 \lambda_{3}^{2}+\lambda_{4}^{2}=6 \lambda^{2}+3 \frac{1}{\lambda^{2}}+\left(\frac{1}{\lambda}-2 \lambda\right)^{2}=2 S-2 t+4, \\
\left(24 \lambda-14 \lambda_{4}\right) c=-14\left(\lambda_{4}-\lambda\right) c+10 \lambda c=-\frac{7}{3} S(S-4)+\frac{5 S(S-4) t}{3(1-3 t)}, \\
5+6 \lambda \lambda_{4}-\lambda_{4}^{2}=-\left(3 \lambda^{2}+\frac{1}{\lambda^{2}}-2\right)-13 \lambda^{2}+13=-\frac{S}{2}-13 t+13
\end{array}\right.
$$

Substituting (5.21) to (5.20), we have

$$
\begin{equation*}
(55 t-85) S^{2}-\left(990 t^{2}-1500 t+390\right) S+432 t^{2}-1008 t+288=0 \tag{5.22}
\end{equation*}
$$

By eliminating S from the above two equations (5.21) and (5.22), we have

$$
\begin{equation*}
990 t^{5}-1923 t^{4}+1262 t^{3}-142 t^{2}-200 t+85=0 \tag{5.23}
\end{equation*}
$$

Here, since $S=6 t+2 / t-4>4$, we have $0<t<1 / 3$ or $t>1$.
For all t such that $0<t<1 / 3$,

$$
\begin{aligned}
\text { LHS of }(5.23)= & 990 t^{5}-1923 t^{4}+1262 t^{3}-142 t^{2}-200 t+85 \\
= & 110(1-3 t)^{2} t^{3}+421(1-3 t) t^{3}+16(1-3 t)(1+3 t)+67(1-3 t) \\
& +731 t^{3}+2 t^{2}+t+2>0 .
\end{aligned}
$$

Moreover, for all t such that $t>1$

$$
\begin{aligned}
\text { LHS of }(5.23)= & 990 t^{5}-1923 t^{4}+1262 t^{3}-142 t^{2}-200 t+85 \\
= & 962(t-1)^{2} t^{3}+100(t-1)^{2}+242(t-1) t^{2}+15\left(t^{3}-1\right) \\
& +28 t^{5}+t^{4}+43 t^{3}>0
\end{aligned}
$$

Hence, there is no a root of the equation (5.23). It follows that $b \neq-1$.
Case 2. In the case $b=1$: From (5.3) and (4.7), we have

$$
\left\{\begin{array}{l}
h_{114}=h_{224}=\left(\lambda_{4}-\lambda_{3}\right) a, \quad h_{334}=2\left(\lambda-\lambda_{4}\right) a, \quad h_{444}=2\left(\lambda_{3}-\lambda\right) a \tag{5.24}\\
\omega_{41}\left(e_{1}\right)=\omega_{42}\left(e_{2}\right)=h_{114} /\left(\lambda_{4}-\lambda\right), \quad \omega_{43}\left(e_{3}\right)=h_{334} /\left(\lambda_{4}-\lambda_{3}\right)
\end{array}\right.
$$

and from (4.5) and (5.24), we also have

$$
\begin{align*}
S(S-4) & =3 h_{114}^{2}+3 h_{224}^{2}+3 h_{334}^{2}+h_{444}^{2} \tag{5.25}\\
& =\left\{6\left(\lambda_{4}-\lambda_{3}\right)^{2}+12\left(\lambda-\lambda_{4}\right)^{2}+4\left(\lambda_{3}-\lambda\right)^{2}\right\} a^{2}
\end{align*}
$$

We compute h_{1144} in Step 1 and Step 2 respectively by using different ways, and show that in Step 3 they are not equal mutually to prove $b \neq 1$.

Step 1. First we compute h_{1144} in one way. Now, (4.4), (4.7) and (5.24) give

$$
\begin{align*}
h_{1144} & =(4-S) \lambda-h_{1111}-h_{1122}-h_{1133} \tag{5.26}\\
& =(4-S) \lambda-h_{114}\left\{3 \omega_{41}\left(e_{1}\right)+\omega_{42}\left(e_{2}\right)+\omega_{43}\left(e_{3}\right)\right\} \\
& =(4-S) \lambda-\frac{4\left(\lambda_{4}-\lambda_{3}\right)^{2}}{\lambda_{4}-\lambda} a^{2}+2\left(\lambda_{4}-\lambda\right) a^{2} .
\end{align*}
$$

Step 2. Second we compute h_{1144} by using another way. Here,

$$
h_{2244}=(4-S) \lambda-h_{224}\left\{\omega_{41}\left(e_{1}\right)+3 \omega_{42}\left(e_{2}\right)+\omega_{43}\left(e_{3}\right)\right\}=h_{1144} .
$$

Hence, (4.2) and (4.6) imply a system of equations:

$$
\left\{\begin{align*}
2 h_{1144}+h_{3344}+h_{4444} & =0 \tag{5.27}\\
2 \lambda h_{1144}+\lambda_{3} h_{3344}+\lambda_{4} h_{4444} & =-8 S a^{2} \\
6 h_{114} h_{1144}+3 h_{334} h_{3344}+h_{444} h_{4444} & =0
\end{align*}\right.
$$

since

$$
\begin{aligned}
2 h_{114}^{2}+h_{334}^{2}+h_{444}^{2} & =\left\{2\left(\lambda_{4}-\lambda_{3}\right)^{2}+4\left(\lambda-\lambda_{4}\right)^{2}+4\left(\lambda_{3}-\lambda\right)^{2}\right\} a^{2} \\
& =\left\{8 \lambda^{2}+8 \lambda_{3}^{2}+8 \lambda_{4}^{2}-2\left(\lambda_{3}^{2}+\lambda_{4}^{2}+2 \lambda_{3} \lambda_{4}\right)-8 \lambda\left(\lambda_{3}+\lambda_{4}\right)\right\} a^{2} \\
& =8\left(2 \lambda^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right) a^{2}=8 S a^{2} .
\end{aligned}
$$

By using (5.24) and (5.25), from the system (5.27) of equations we also compute

$$
\begin{align*}
h_{1144} & =\frac{8\left(h_{444}-3 h_{334}\right) S a^{2}}{6 h_{114}\left(\lambda_{4}-\lambda_{3}\right)+3 h_{334}\left(2 \lambda-2 \lambda_{4}\right)+h_{444}\left(2 \lambda_{3}-2 \lambda\right)} \tag{5.28}\\
& =\frac{8\left(h_{444}-3 h_{334}\right) S a^{3}}{6 h_{114}^{2}+3 h_{334}^{2}+h_{444}^{2}}=\frac{32\left(\lambda_{4}-3 \lambda\right)}{S-4} a^{4} .
\end{align*}
$$

Step 3. We want to show that $(5.26) \neq(5.28)$. From (5.6), we have

$$
\begin{equation*}
1+\lambda_{3} \lambda=2 a^{2} \tag{5.29}
\end{equation*}
$$

Case $2-1$. Suppose that $\lambda=0$. Then, it follows from (5.29) that

$$
\begin{equation*}
a^{2}=\frac{1}{2}, \quad \lambda_{4}=-\lambda_{3} \neq 0 \quad \text { and } \quad S=2 \lambda_{4}^{2} \tag{5.30}
\end{equation*}
$$

Hence, (5.30) and (5.25) imply

$$
\left\{\begin{array}{l}
(5.26)=(4-S) \lambda-\frac{4\left(\lambda_{4}-\lambda_{3}\right)^{2}}{\lambda_{4}-\lambda} a^{2}+2\left(\lambda_{4}-\lambda\right) a^{2}=-7 \lambda_{4} \\
(5.28)=\frac{32\left(\lambda_{4}-3 \lambda\right)}{S-4} a^{4}=\frac{32\left(\lambda_{4}-3 \lambda\right) S}{S(S-4)} a^{4}=\frac{64 \lambda_{4}^{3}}{40 \lambda_{4}^{2}} a^{2}=\frac{4}{5} \lambda_{4}
\end{array}\right.
$$

Hence, $(5.26) \neq(5.28)$, and so $b \neq 1$.
Case $2-2$. Suppose $\lambda \neq 0$ and $(5.26)=(5.28)$. Then, we have

$$
\begin{equation*}
(4-S) \lambda-\frac{4\left(\lambda_{4}-\lambda_{3}\right)^{2}}{\lambda_{4}-\lambda} a^{2}+2\left(\lambda_{4}-\lambda\right) a^{2}=\frac{32\left(\lambda_{4}-3 \lambda\right)}{S-4} a^{4} \tag{5.31}
\end{equation*}
$$

Let $\lambda^{2}=t$ and $2 a^{2}-1=u$. Then, from (5.29) we have

$$
\begin{equation*}
\lambda_{3}=\frac{u}{\lambda}, \quad \lambda_{4}=\frac{-u}{\lambda}-2 \lambda, \quad S=2 \lambda^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}=6 t+\frac{2 u^{2}}{t}+4 u . \tag{5.32}
\end{equation*}
$$

Substituting (5.32) to (5.25) and (5.31), respectively, we obtain

$$
\left\{\begin{array}{c}
u^{4}-t u^{3}-\left(4 t^{2}+7 t\right) u^{2}-\left(5 t^{3}+18 t^{2}\right) u+\left(9 t^{4}-23 t^{3}\right)=0 \tag{5.33}\\
5 u^{5}+(14 t+7) u^{4}+\left(28 t^{2}+26 t\right) u^{3}+\left(4 t^{3}+124 t^{2}-10 t\right) u^{2} \\
-\left(93 t^{4}-222 t^{3}-4 t^{2}\right) u-\left(54 t^{5}-69 t^{4}-38 t^{3}\right)=0
\end{array}\right.
$$

To find such pairs of numbers t, u that satisfy the above system (5.33) of equations, let us eliminate u. First, by eliminating u^{5} and u^{4} from (5.33), we have

$$
\begin{align*}
(67 t+68) u^{3} & +\left(105 t^{2}+375 t+39\right) u^{2}+\left(-43 t^{3}+714 t^{2}+130 t\right) u \tag{5.34}\\
& -\left(225 t^{4}-443 t^{3}-199 t^{2}\right)=0
\end{align*}
$$

$\{(5.34) \times u\}$ and (5.33) imply

$$
\begin{align*}
& \left(172 t^{2}+443 t+39\right) u^{3}+\left(225 t^{3}+1455 t^{2}+606 t\right) u^{2} \tag{5.35}\\
& \quad+\left(110 t^{4}+1989 t^{3}+1423 t^{2}\right) u-\left(603 t^{5}-929 t^{4}-1564 t^{3}\right)=0
\end{align*}
$$

$\left\{(5.34) \times\left(172 t^{2}+443 t+39\right)-(5.35) \times(67 t+68)\right\} \div 3$ becomes

$$
\begin{align*}
\left(995 t^{4}-\right. & \left.590 t^{3}+12462 t^{2}-3102 t+507\right) u^{2} \tag{5.36}\\
= & \left(4922 t^{5}+12328 t^{4}-35464 t^{3}+3776 t^{2}-1690 t\right) u \\
& \quad-567 t^{6}+14906 t^{5}-17914 t^{4}+306 t^{3}-2587 t^{2} .
\end{align*}
$$

Second, $(5.34) \times\left(995 t^{4}-590 t^{3}+12462 t^{2}-3102 t+507\right)$ and (5.36) give

$$
\begin{gather*}
\quad(67 t+68) u\left\{\left(4922 t^{5}+12328 t^{4}-35464 t^{3}+3776 t^{2}-1690 t\right) u\right. \tag{5.37}\\
\left.-567 t^{6}+14906 t^{5}-17914 t^{4}+306 t^{3}-2587 t^{2}\right\} \\
+\left(105 t^{2}+375 t+39\right)\left\{\left(4922 t^{5}+12328 t^{4}-35464 t^{3}+3776 t^{2}-1690 t\right) u\right. \\
\left.\quad-567 t^{6}+14906 t^{5}-17914 t^{4}+306 t^{3}-2587 t^{2}\right\} \\
+\left(-43 t^{3}+714 t^{2}+130 t\right)\left(995 t^{4}-590 t^{3}+12462 t^{2}-3102 t+507\right) u \\
-\left(225 t^{4}-443 t^{3}-199 t^{2}\right)\left(995 t^{4}-590 t^{3}+12462 t^{2}-3102 t+507\right)=0
\end{gather*}
$$

Here, $(5.37) \div 2 t(67 t+68)$ becomes

$$
\begin{align*}
& \left(2461 t^{4}+6164 t^{3}-17732 t^{2}+1888 t-845\right) u^{2} \tag{5.38}\\
& \quad+\left(3254 t^{5}+32788 t^{4}-32704 t^{3}-1620 t^{2}-5174 t\right) u \\
& \quad+\left(-2115 t^{6}+16520 t^{5}-10652 t^{4}+10788 t^{3}-9933 t^{2}\right)=0 .
\end{align*}
$$

Third, $(5.38) \times\left(995 t^{4}-590 t^{3}+12462 t^{2}-3102 t+507\right)$ and (5.36) give

$$
\begin{aligned}
& \left(2461 t^{4}+6164 t^{3}-17732 t^{2}+1888 t-845\right)\left\{\left(4922 t^{5}+12328 t^{4}-35464 t^{3}\right.\right. \\
& \left.\left.\quad+3776 t^{2}-1690 t\right) u-567 t^{6}+14906 t^{5}-17914 t^{4}+306 t^{3}-2587 t^{2}\right\} \\
& +\left(3254 t^{5}+32788 t^{4}-32704 t^{3}-1620 t^{2}-5174 t\right)\left(995 t^{4}+\cdots+507\right) u \\
& +\left(-2115 t^{6}+16520 t^{5}-10652 t^{4}+10788 t^{3}-9933 t^{2}\right)\left(995 t^{4}+\cdots+507\right)=0 .
\end{aligned}
$$

And dividing the above equation by $4 t(67 t+68)$ we obtain

$$
\begin{align*}
& \left(57279 t^{7}+282846 t^{6}-697135 t^{5}+698506 t^{4}-129559 t^{3}-69294 t^{2}\right. \tag{5.39}\\
& \quad+36855 t-4394) u=\left(13059 t^{7}-203082 t^{6}+164525 t^{5}\right. \\
& \left.\quad+376306 t^{4}-906107 t^{3}+494522 t^{2}-124805 t+10478\right) t .
\end{align*}
$$

In the same way as above, $(5.36) \times\left(57279 t^{7}+\cdots-4394\right)$ and (5.39) imply an equation. And dividing the equation by $\left(995 t^{4}+\cdots+507\right)$ we also obtain

$$
\begin{align*}
& \left(13059 t^{7}-203082 t^{6}+164525 t^{5}+376306 t^{4}-906107 t^{3}+494522 t^{2}\right. \tag{5.40}\\
& \quad-124805 t+10478) u=\left(31959 t^{7}-126930 t^{6}+959993 t^{5}\right. \\
& \left.\quad-2470086 t^{4}+2650385 t^{3}-1084542 t^{2}+226831 t-12506\right) t
\end{align*}
$$

Last, using (5.39) and (5.40) we obtain an equation in which u is eliminated and dividing both sides of the equation by $32\left(995 t^{4}+\cdots+507\right)$ we obtain

$$
\begin{align*}
& 52137 t^{10}+253062 t^{9}-2033508 t^{8}+5141910 t^{7}-7134618 t^{6} \tag{5.41}\\
& +6230014 t^{5}-3591608 t^{4}+1378538 t^{3}-343231 t^{2}+50684 t-3380 \\
& =(t-1)^{2}(3 t-1)^{2}\left(5793 t^{6}+43566 t^{5}-123930 t^{4}+139498 t^{3}\right. \\
& \left.-79719 t^{2}+23644 t-3380\right)=0
\end{align*}
$$

From (5.39), (5.40) and (5.32), we see that if $t=1$ or $\frac{1}{3}$, then $u=-1$ and $S=4$. But since $S>4$, we know $t \neq 1$ and $t \neq \frac{1}{3}$. Hence, from (5.41) we have an equation
$(5.42) 5793 t^{6}+43566 t^{5}-123930 t^{4}+139498 t^{3}-79719 t^{2}+23644 t-3380=0$.
Let

$$
f(t)=5793 t^{6}+43566 t^{5}-123930 t^{4}+139498 t^{3}-79719 t^{2}+23644 t-3380
$$

Then, we have

$$
\begin{aligned}
f^{\prime}(t) & =34758 t^{5}+217830 t^{4}-495720 t^{3}+418494 t^{2}-159438 t+23644 \\
f^{\prime \prime}(t) & =6\left(28965 t^{4}+145220 t^{3}-247860 t^{2}+139498 t-26573\right) \\
f^{\prime \prime \prime}(t) & =6\left(115860 t^{3}+435660 t^{2}-495720 t+139498\right) \\
& =6(28965 t+131172)(2 t-1)^{2}+6\left(26832 t^{2}+3 t+8326\right)>0
\end{aligned}
$$

Since $f^{\prime \prime \prime}(t)>0$ for all $t>0, f^{\prime \prime}$ is increasing. And since $f^{\prime \prime}(0)<0$, there is only one real number $\alpha(5 / 12<\alpha<1 / 2)$ such that $f^{\prime \prime}(\alpha)=0$. That is, f^{\prime} has only one local minimum at α. For the α,

$$
\begin{aligned}
f^{\prime}(\alpha)= & 34758 \alpha^{5}+217830 \alpha^{4}-495720 \alpha^{3}+418494 \alpha^{2}-159438 \alpha+23644 \\
= & \left(\frac{6 \alpha}{5}-1\right)\left(28965 \alpha^{4}+145220 \alpha^{3}-247860 \alpha^{2}+139498 \alpha-26573\right) \\
& +72531 \alpha^{4}-53068 \alpha^{3}+3236 \alpha^{2}+11947 \alpha-2929+\frac{2}{5} \alpha^{2}+\frac{3}{5} \alpha \\
= & 72531 \alpha^{4}-53068 \alpha^{3}+3236 \alpha^{2}+11947 \alpha-2929+\frac{2}{5} \alpha^{2}+\frac{3}{5} \alpha \\
> & \left(8059 \alpha^{2}-524 \alpha-886\right)(3 \alpha-1)^{2}+(2 \alpha+11)(\alpha-1)^{2}+7175 \alpha-2054>0
\end{aligned}
$$

since $8059 \alpha^{2}-524 \alpha-886>0$ and $7175 \alpha-2054>0$. Hence $f^{\prime}(t)>0$ for all $t>0$, and so f is increasing. It implies that the equation (5.42) has only one root $\beta(\approx 0.654)$ between $3 / 5$ and $2 / 3$, since $f(3 / 5)<0$ and $f(2 / 3)>0$. Since $S=6 t+2 u^{2} / t+4 u>4$, we have

$$
u^{2}+2 t u+3 t^{2}-2 t>0
$$

and for the root $t=\beta$ we also have

$$
u^{2}+2 \beta u+3 \beta^{2}-2 \beta>0 .
$$

Hence, we have

$$
\begin{equation*}
u<-\beta-\sqrt{2 \beta(1-\beta)} \quad \text { and } \quad u>-\beta+\sqrt{2 \beta(1-\beta)} \tag{5.43}
\end{equation*}
$$

In fact, since $3 / 5<\beta<2 / 3$ we have

$$
\begin{equation*}
-\beta-\sqrt{2 \beta(1-\beta)}<-1 \quad \text { and } \quad-\beta+\sqrt{2 \beta(1-\beta)}>0 \tag{5.44}
\end{equation*}
$$

Since $u=2 a^{2}-1>-1$, from (5.43) and (5.44) we need at least that $u>0$. But from (5.39) and (5.40) we can compute that $u \approx-1.12<0$. Therefore there is no a pair t, u satisfying (5.33) such that $t>0, t \neq \frac{1}{3}, t \neq 1$ and $u>0$. That is, it follows that $b \neq 1$, which completes the proof of Lemma 5.2.

We completes the proof of our Theorem by Lemma 5.1 and Lemma 5.2.

References

[1] S. Chang, On minimal hypersurfaces with constant scalar curvatures in S^{4}, J. Diff. Geom., 37(1993), 523-534.
[2] S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Duke Math. J., 61(1990), 195-206.
[3] W. Y. Hsiang, On the construction of infinitely many congruence classes of imbedded closed minimal hypersurfaces in $S^{n}(1)$ for all $n \geq 3$, Duke Math. J., 55(2)(1987), 361-367.
[4] H. B. Lawson, Local rigidity theorems for minimal hypersurfaces, Annals of Math., 89(1969), 187-191.
[5] C. K. Peng and C. L. Terng, Minimal hypersurface of spheres with constant scalar curvature, Annals of Math. Studies, No. 103, Princeton University Press, Princeton, NJ, (1983), 177-198.
[6] J. Simons, Minimal varieties in a Riemannian manifold, Ann. of Math., 88(1968), 62-105.
[7] J. U. So, On G-invariant Minimal Hypersurfaces with Constant Scalar Curvatures in S^{5}, Commun. Korean Math. Soc., $\mathbf{1 7}(2002)$, 261-278.
[8] H. Yang and Q. M. Cheng, Chern's conjecture on minimal hypersurfaces, Math. Z., 227(1998), 377-390.
[9] S. T. Yau, Problem section, Annals of Math. Studies, No. 102, Princeton University Press, Princeton, NJ, (1982), 693.

