DOI QR코드

DOI QR Code

Analysis of Attached Bacterial Community of Biological Activated Carbon Process Using FISH

FISH 기법을 이용한 생물활성탄 공정에서의 운전기간별 부착 박테리아 군집변화 분석

  • Son, Hyeng-Sik (Department of Microbiology, Pusan National University) ;
  • Son, Hee-Jong (Water Quality Institute, Waterworks Headquarter) ;
  • Park, Geun-Tae (Research & University-Industry Cooperation, Pusan National University) ;
  • Lee, Sang-Joon (Department of Microbiology, Pusan National University)
  • 손형식 (부산대학교 미생물학과) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 박근태 (부산대학교 산학협력단) ;
  • 이상준 (부산대학교 미생물학과)
  • Received : 2012.08.16
  • Accepted : 2013.01.07
  • Published : 2013.01.31

Abstract

The concentration of organic compounds was analyzed at each step of BAC process though $BDOC_{total/rapid/slow}$. Further, bacteria communities and biomass concentrations measured FISH and ATP methods were analyzed. The bed volume (BV) of steady state is different from that of based on assessment of organic compounds removal. Bed volumes in DOC, $BDOC_{rapid}$ and $BDOC_{total/slow}$ removal at steady state were around 27,500 (185.8 day), 15,000 (101.4 day) and 32,000 (216.2 day), respectively. A biomass didn't change after the bed volume reached 22,500 (152.0 day) according to analyzing ATP concentration of bacteria. The concentration of ATP was 2.14 ${\mu}g/g$ in BV 22,500 (152.0 day). The total bacterial number was $4.01{\pm}0.4{\times}10^7$ cells/g at the bed volume 1,150 (7.8 day) (the initial operation) and the number of bacteria was $9.27{\pm}0.2{\times}10^9$ at the bed volume 58,560 395.7 day) that increased more than 200 times. Bacterial uptrend was reduced and bacterial communities were stabilized since BV 18,720 (126.5 day). When BV were 1,150 (7.8 day), 8,916 (60.2 day), 18,720 (126.5 day), 31,005 (209.5 day), 49,632 (335.3 day), 58,560 (395.7 day), a proportion of total bacteria for the Eubacteria were 60.1%, 66.0%, 78.4%, 82.0%, 81.3% respectively. ${\gamma}$-Proteobacteria group was the most population throughout the entire range. The correlation coefficient ($r^2$) between Eubacteria biomass and ATP concentration was 0.9448.

Keywords

References

  1. Boon, N., Pycke, B. F. G., Marzorati, M., Hammes, F., 2011, Nutrient gradients in a granular activated carbon biofilter drives bacterial community organization and dynamics, Water Res., 45, 6355-6361. https://doi.org/10.1016/j.watres.2011.09.016
  2. Carlson, K. H., Amy, G. L., 1998, BOM removal during biofiltration, J. AWWA., 90(12), 42-52. https://doi.org/10.1002/j.1551-8833.1998.tb08550.x
  3. Chien, C. C., Kao, C. M., Chen, C. W., Dong, C. D., Wu, C. Y., 2008, Application of biofiltration system on AOC removal: column and field studies, Chemosphere, 71, 1786-1793. https://doi.org/10.1016/j.chemosphere.2007.12.005
  4. Delong, E. F., Wickham, G. S., Davis, A. A., 1993, Phylogenetic diversity of substrate marine microbial communities from the Atlantics and Pacific Pceans, Science, 243, 1360-1363.
  5. Dewaters, J. E., Digiano, F. A., 1990, The influence of ozonated natural organic matter on the biodegradation of a micropollutant in a GAC bed, J. AWWA., 82(8), 69-75. https://doi.org/10.1002/j.1551-8833.1990.tb07011.x
  6. Faoro, H., Alves, A. C., Souza, E. M., Rigo, L. U., Cruz, L. M., Al-Janabi, S. M., Monteiro, R. A., Baura, V. A., Pedrosa, F. O., 2010, Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest, Appl. Environ. Microbiol., 76(14), 4744-4749. https://doi.org/10.1128/AEM.03025-09
  7. Fonseca, A. C., Summers, R. S., Hernandez, M. T., 2001, Comparative measurements of microbial activity in drinking water biofilters, Water Res., 35(16), 3817-3824. https://doi.org/10.1016/S0043-1354(01)00104-X
  8. Glockner, F. O., Fuchs, B. M., Amann, R., 1999, Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization, Appl. Environ. Microbiol., 65(8), 3721-3726.
  9. Juretschko, S., Loy, A., Lehner, A., Wagner, M., 2002, The Microbial community composition of a nitrifyingdenitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA Approach, Syst. Appl. Microbiol., 25, 84-99. https://doi.org/10.1078/0723-2020-00093
  10. Lew, S., Lew, M., Miesszczynski, T., Szarek, J., 2010, Selected fluorescent techniques for identification of the physiological state of individual water and soil bacterial cells-review, Folia Microbiol., 55(2), 107-118. https://doi.org/10.1007/s12223-010-0017-6
  11. Lymperopoulou, D. S., Kormas, K. A., Karagoun, A. D., 2012, Variability of prokaryotic community structure in a drinking water reservoir (marathonas, Greece), Microbe Environ., 27(1), 1-8. https://doi.org/10.1264/jsme2.ME11253
  12. Magic-Knezev, A., van der Kooij, D., 2004, Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment, Water Res., 38, 3971-3979. https://doi.org/10.1016/j.watres.2004.06.017
  13. Manz, W., Amann, R., Ludwig, W., Wagner, M., Schleifer, K. H., 1992, Phylogenetic oligonucleotide probes for the major subclassesof Proteobacteria: problemas and solutions, Sys. Appl. Microbiol. 15(4), 593-600. https://doi.org/10.1016/S0723-2020(11)80121-9
  14. Manz, W., Eisenbrecher, M., Neu, T. R., Szewzyk, U., 1998, Abundance and spatial organization of gramnegative sulfate-reducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides, FEMS Microbiol. Ecol., 25, 43-61. https://doi.org/10.1111/j.1574-6941.1998.tb00459.x
  15. Manz, W., Szewzyk, U., Ericsson, P., Amann, R., Schleifer, K. H., Stenström, T. A., 1993, In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes, Appl. Environ. Microbiol., 59, 2293-2298.
  16. Meier, H., Amann, R., Ludwig, W., Schleifer, K. H., 1999, Specific oligonucleotide probes for In situ detection of a major group of gram-positive bacteria with Low DNA G+C content, Syst. Appl. Microbiol., 22, 186-196. https://doi.org/10.1016/S0723-2020(99)80065-4
  17. Neef, A., Amann, R., Schlesner, H., Scheleifer, K., 1998, Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes, Microbiol., 144(12), 3257-3266. https://doi.org/10.1099/00221287-144-12-3257
  18. Nubel, U., Garcia-Pichel, F., Muyzer, G., 1997, PCR primers to amplify 16S rRNA genes from cyanobacteria, Appl. Environ. Microbiol., 63, 3327-3332.
  19. Prescott, L. M., Harley, J. P., Klein, D. A., 2002, Microbiology, McGraw-Hill Higher Education, New-York.
  20. Seredynska-Sobecka, B., Tomaszewska, M., Janus, M., Morawski, A. W., 2006, Biological activation of carbon filters, Water Res., 40, 355-363. https://doi.org/10.1016/j.watres.2005.11.014
  21. Servais, P., Billen, G., Bouillot, P., 1994, Biological colonization of granular activated carbon filters in drinking-water treatment, J. Environ. Eng., 120(4), 888-899. https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(888)
  22. Son, H. J., Park, H. K., Lee, S. A., Jung, E. Y., Jung, C. W., 2005, The characteristics of microbial community for biological activated carbon in water treatment plant, Environ. Eng. Res., 27(12), 1311-1320.
  23. Son, H. J., Roh, J. S., Kang, L. S., 2004, Determination of BDOCrapid and BDOCslow using batch bio-reactor, K. Society on Water Environ., 20(4), 357-364.
  24. Son, H. J., Yoo, S. J., Roh, J. S., Yoo, P. J., 2009, Biological activated carbon (BAC) process in water treatment, Environ. Eng. Res., 31(4), 308-323.
  25. Son, H. S., Kim, M., Jeing, S. Y., Kim, H. Y., Park, G. T., Kim, M. J., Ryu, E. Y., Lee, S. J., 2008, Anaysis of bacterial community structure of biological activated carbon process in drinking water treatment plant using FISH, J. Environ. Sci., 17(5), 555-564.
  26. Stewart, M. H., Wolfe, R. L., Means, E. G., 1990, Assessment of the bacteriological activity associated with granular activated carbon treatment of drinking-water, Appl. Environ. Microbiol., 56(12), 3822-3829.
  27. Suzuki, D., Ueki, A., Amaishi, A., Ueki, K., 2007, Diversity of substrate utilization and growth characteristics of sulfate-reducing bacteria isolated from estuarine sediment in Japan, J. Gen. Appl. Microbiol., 53(2), 119-132. https://doi.org/10.2323/jgam.53.119
  28. Velten, S., Hammes, F., Boller, M., Egli, T., 2007, Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination, Water Res., 41, 1973-1983. https://doi.org/10.1016/j.watres.2007.01.021
  29. Wagner, M., Amann, R., Lemmer, H., Scheleifer, K., 1993, Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure, Appl. Environ. Microbiol., 59(5), 1520-1525.
  30. Wagner, M., Erhart, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., Schleifer, K. H., 1994, Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge, Appl. Environ. Microbial., 60(3), 792-800.
  31. Wakelin, S. A., Page, D. W., Pavelic, P., Gregg, A. L., Dillon, P. J., 2010, Rich microbial communities inhabit water treatment biofilters and are differentially affected by filter type and sampling depth, Water Sci. & Technol.: Water Suppl., 10(2), 145-156. https://doi.org/10.2166/ws.2010.570
  32. Wang, J., Jenkins, C., Webb, R. I., Fuerst, J. A., 2002, Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater, Appl. Environ. Microbiol., 68(1), 417-422. https://doi.org/10.1128/AEM.68.1.417-422.2002