DOI QR코드

DOI QR Code

능동형 RFID 시스템에서 태그의 Overhearing을 제거하기 위한 에너지 절약 프로토콜

An Energy Saving Protocol to Eliminate Overhearing Problem in Active RFID System

  • 이채석 (부산대학교 컴퓨터공학과 이동통신 연구실) ;
  • 김동현 (부산대학교 컴퓨터공학과 이동통신 연구실) ;
  • 김종덕 (부산대학교 컴퓨터공학과 이동통신 연구실)
  • 투고 : 2012.09.30
  • 심사 : 2013.01.03
  • 발행 : 2013.01.31

초록

자체 배터리를 기반으로 동작하는 능동형 RFID(Radio Frequency IDentification)시스템에서 태그의 에너지 절약은 매우 중요하다. 표준 프로토콜은 태그의 에너지를 절약하기 위해 태그의 Sleep모드를 이용하여 에너지를 절약한다. Sleep모드로 동작중인 태그들은 리더로부터 특수한 신호를 수신하면 깨어나게 되며, Sleep명령어를 수신하기 전까지 지속적으로 Rx모드를 유지하여 에너지를 낭비한다. Overhearing은 태그를 목적지로 하지 않은 프레임을 수신하여 불필요한 에너지를 소모하는 상태를 말한다. 우리의 분석에 따르면 Overhearing으로 인하여 태그가 소모하는 에너지는 필수적으로 소모하는 에너지보다 수십 배나 많이 발생했다. 우리는 이 문제를 제거하기 위해 효과적인 통신 구간을 미리 태그에게 알려주는 RANO(Reservation Aloha for No Overhearing) 프로토콜을 제안한다. 우리는 실제 구현을 통해, 태그의 수, 데이터의 크기를 바꿈으로써 제안된 프로토콜의 성능을 평가하였다. 실험 결과, 제안한 프로토콜이 표준 프로토콜보다 에너지를 약 22배 절약하였다.

Reducing the energy that consumed by tag is a key requirement for the wider acceptance of the active RFID systems that use battery constrained tags. When the reader is not interrogating, the active RFID standard protocols try to reduce energy consumption of tags by using sleep mode. On sleep mode tags is active by receiving a specific signals from reader, until tag receive a sleep mode command from the reader, a tag waste energy for remaining in RX mode. Overhearing is a state of a tag in which it wastes energy for maintaining active RX state while there is no frame destined to it. According to our analysis, the amount of energy consumed by a tag due to overhearing is several time larger than that consumed by the effective communication. We propose RANO(Reservation Aloha for No Overhearing) that is designed to inform a tag of its effective communication intervals to eliminate overhearing problem in active RFID communication. The performance of the proposed protocol was evaluated through the real world by changing the number of tags and size of data. The result of an experiment, the proposed protocol performed saving about 22 times less than the standard protocol did.

키워드

참고문헌

  1. K. Finkenzeller, RFID Handbook: fundamentals and applications in contactless smart cards and identification, Wiley press, 2003.
  2. BRIDGE, Sensor-enabled RFID tag handbook, Building Radio frequency Identification for the Global Environment, 2008, from www.bridge-project.eu.
  3. T. V. Dam and K. Langendoen, "An adaptive energy-efficient MAC protocol for wireless sensor networks," in Proc. ACM Conf. on Embed. Netw. Sensor Syst. (Sensys), Los Angeles, CA, USA, Nov. 2003.
  4. ISO/IEC 18000.7.2, Information technology AIDC techniques - Radio frequency identification for item management - Air interface, Part 7: Parameters for active air interface communications at 433 MHz, 2008.
  5. W. Ye, J. Heidemann, and D. Estrin., "An energy-efficient MAC protocol for wireless sensor networks," In Proc. Int. Conf. on Comput. Commun. (INFOCOM), vol. 3, pp. 1567-1576, New York, USA, Jun. 2002.
  6. J. Polastre, J. Hill, and D. Culler, "Versatile low power media access for wireless sensor networks," in Proc. ACM Conf. on Embed. Netw. Sensor Syst. (Sensys), pp. 95-107, Baltimore, MD, USA, 2004.
  7. S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B.Srivastava., "Coverage problems in wireless ad-hoc sensor networks," In Proc. Int. Conf. on Comput. Commun. (INFOCOM), pp. 1380-1387, Anchorage, AK, USA, Apr. 2001.
  8. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11.
  9. X. Su and Y. Xiao, "Analysis of energy consumption for multiple object identification system with active RFID tags," in Proc. IEEE Wirel. Commun. and Netw. Conf., (WCNC), pp. 4019-4023, 2007.
  10. W. J. Yoon, S. H. Chung, S. J. Park, and S. Y. Kang, "Multichannel slotted-aloha anticollision protocol for active RFID systems," in Proc. IEEE Wirel. Commun. and Netw. Conf., (WCNC), pp. 1-5, 2009.
  11. V. Namboodiri and L. Gao, "Energy-aware tag anti-collision protocols for RFID systems," Fifth Annual IEEE International Conferance on Pervasive Computing and Communications (PerCom), pp.23-46 2007.
  12. G. Bhanange and Y. Zhang, "Relay MAC: a collission free and power efficient reading protocol for active RFID tags," in Proc. IEEE Int. Conf. on Computer Commun. and Netw. (ICCCN), pp. 97-102, Oct. 2006.
  13. N. Li, X. Duan, Y. Wu, S. Hua, and B. Jiao, "An Anti-Collision Algorithm for Active RFID," International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2006, 22-24, September 2006.
  14. B. Nilsson, L. Bengtsson, P. A. Wiberg, and B. Svensson, "Protocols for active RFID ─ the energy consumption aspect," in Proc. IEEE Symp. on Ind. Embed. Syst. (SIES), Lisbon, Portugal, pp. 4-7, Jul. 2007.
  15. C. Law, K. Lee, and K. Siu, "Efficient memoryless protocol for tag identification," in Proc. ACM int. workshop on Discrete algorithms and methods for mobile comput. and commun. (DIALM), pp 75-84, Boston, USA, August 2000.
  16. H. Park, D. Kim, and J. Kim, "Load balancing for a multi-channel multi-interface 2.4GHz sctive RFID reader," IEICE Trans. on Commun, vol. E93-B, no. 5, pp. 1205-1215, 2010. https://doi.org/10.1587/transcom.E93.B.1205
  17. Kyung-hoon Lee, Bae-ho Lee, Young-min Kim, "Implementation of Active RFID System Using Prediction Packet Algorithm for Ultra Low Power Wireless Communication," J. KICS, vol. 37, no. 8, pp. 661-668, Aug. 2012. https://doi.org/10.7840/kics.2012.37A.8.661