DOI QR코드

DOI QR Code

GEOMETRIC HERMITE INTERPOLATION FOR PLANAR PYTHAGOREAN-HODOGRAPH CUBICS

  • Lee, Hyun Chol (Department of Mathematics, Gyeongsang National University) ;
  • Lee, Sunhong (Department of Mathematics and RINS, Gyeongsang National University)
  • 투고 : 2012.11.22
  • 심사 : 2012.12.31
  • 발행 : 2013.01.31

초록

We solve the geometric Hermite interpolation problem with planar Pythagorean-hodograph cubics. For every Hermite data, we determine the exact number of the geometric Hermite interpolants and represent the interpolants explicitly. We also present a simple criterion for determining whether the interpolants have a loop or not.

키워드

참고문헌

  1. G. Albrecht and R.T. Farouki, Construction of $C^{2}$ Pythagorean hodograph interpolation splines by the homotopy method, Advances in Computational Mathematics 5 (1996), 417-442. https://doi.org/10.1007/BF02124754
  2. M. Byrtus and B. Bastl, $G^{1}$ Hermite interpolation by PH cubics revisited, Computer Aided Geometric Design 27 (2010), no. 8, 622-630. https://doi.org/10.1016/j.cagd.2010.06.004
  3. R. T. Farouki, Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Series: Geometry and Computing. Springer, Berlin, 2008.
  4. R. T. Farouki, The conformal map $z\;{\rightarrow}\;z^{2}$ of the hodograph plane, Computer Aided Geometric Design 11 (1994), 363-390. https://doi.org/10.1016/0167-8396(94)90204-6
  5. R. T. Farouki, M. al-Kandari and T. Sakkalis, Hermite interpolation by rotational-invariant spatial Pythagorean-hodograph curves, Advances in Computational Mathematics 17 (2002), 369-383. https://doi.org/10.1023/A:1016280811626
  6. R. T. Farouki and C. A. Ne, Hermite interpolating by Pythagorean hodograph quintics, Mathematics of Computation 64 (1995), 1589-1609. https://doi.org/10.1090/S0025-5718-1995-1308452-6
  7. R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM Journal of Research and Development 34 (1990), 736-752. https://doi.org/10.1147/rd.345.0736
  8. R. T. Farouki and T. Sakkalis, Pythagorean-hodograph space curves, Advances in Computational Mathematics 2 (1994), 41-66. https://doi.org/10.1007/BF02519035
  9. B. Juttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Mathematics of Computation 70 (2001), 1089-1111.
  10. B. Juttler and C. Maurer, Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling, Computer-Aided Design 31 (1999), 73-83. https://doi.org/10.1016/S0010-4485(98)00081-5
  11. D. S. Meek and D. J. Walton, Geometric Hermite interpolation with Tschirnhausen cubics, Journal of Computational and Applied Mathematics 81 (1997), 299-309. https://doi.org/10.1016/S0377-0427(97)00066-6
  12. F. Pelosi, R. T. Farouki, C. Manni and A. Sestini, Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics, Advances in Computational Mathematics 22 (2005), no. 4, 325-352. https://doi.org/10.1007/s10444-003-2599-x
  13. Z. Sir, B. Bastl and M. Lavicka, Hermite interpolation by hypocycloids and epicycloids with rational offsets, Computer Aided Geometric Design 27 (2010), 405-417. https://doi.org/10.1016/j.cagd.2010.02.001
  14. M. C. Stone and T. D. DeRose, A geometric characterization of parametric cubic curves, ACM Transactions on Graphics 8 (1989), no. 3, 147-163. https://doi.org/10.1145/77055.77056