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GEOMETRIC HERMITE INTERPOLATION FOR PLANAR

PYTHAGOREAN-HODOGRAPH CUBICS

Hyun Chol Lee and Sunhong Lee*

Abstract. We solve the geometric Hermite interpolation problem with

planar Pythagorean-hodograph cubics. For every Hermite data, we de-

termine the exact number of the geometric Hermite interpolants and rep-
resent the interpolants explicitly. We also present a simple criterion for

determining whether the interpolants have a loop or not.

1. Introduction

In computer-aided geometric design, curves are usually represented by poly-
nomial/rational parameterizations. But the derived objects, such as their offset
curves, are not generally represented by rational parameterizations. To over-
come this barrier, Farouki and Sakkalis (1990, 1994) introduced Pythagorean-
hodograph (PH) curves, which are a special class of polynomial curves with
polynomials as their speed functions. PH curves have many computationally
attractive features, so that we can compute their arc lengths and bending en-
ergies and offset curves in an exact manner. For successively abundant results
obtained by many researchers, see Farouki (2008) and references therein.

Hermite interpolation by PH curves are one of the main subjects in the soci-
ety of these research. (For more details see for example Farouki and Neff, 1995;
Albrecht and Farouki, 1996; Jüttler and Mäurer, 1999; Jüttler, 2001; Farouki
et al., 2002; Pelosi et al., 2005; Š́ır et al., 2010.) In this paper, we present
the G1 Hermite interpolation with planar PH cubics. Such an interpolation
was firstly studied by Meek and Walton (1997), depending upon the analysis
of Farouki and Sakkalis (1990). Recently Byrtus and Bastl (2010) extended
these results to more general data and presented a thorough analysis of the
number and the quality of the interpolants; particularly if they contain a loop
or not. To determine the shape of the interpolants, Byrtus and Bastl adapted
the analysis of general cubic Bézier curves given by Stone and DeRose (1989).
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We improve the parallel results of Byrtus and Bastl. For each Hermite
data, we determine the exact number of the G1 Hermite interpolants and also
explicitly represent the desired interpolants. We also present a simple and self-
contained criterion for determining whether the interpolants contain a loop or
not. Our method does not rely upon the results of general cubic curves, and
have advantage in computations in comparison with the previous results.

This paper is organized as follows. Section 2 gives basic properties about
PH cubics. In Section 3, we present the G1 Hermite interpolations for every
possible Hermite data and determine whether the interpolants have a loop or
not with a simple criterion. In Section 4, we conclude this paper.

2. Planar pythagorean-hodograph cubics

A polynomial plane curve r(t) = (x(t), y(t)) is called a Pythagorean-hodograph
(PH) curve (Farouki et al, 1990) if there exists a polynomial σ(t) such that

x′(t)2 + y′(t)2 = σ(t)2.

For a polynomial plane curve r(t), r(t) is a PH curve (Kubota, 1972) if and
only if there are polynomials h(t), u(t), v(t), satisfying

x′(t) = h(t)[u(t)2 − v(t)2], y′(t) = h(t)[2u(t)v(t)]. (1)

Here we note that if gcd(u(t), v(t)) = 1, then gcd(u(t)2 − v(t)2, 2u(t)v(t)) = 1.
In this paper, we will assume that h(t) is monic, i.e., the leading coefficient of
h(t) is 1.

Let r(t) = (x(t), y(t)) be a PH cubic such that (1) for a monic polynomial
h(t) and polynomials u(t), v(t) with gcd(u(t), v(t)) = 1. Then the following are
equivalent:

(a) r(t) is a line;
(b) deg(h(t)) = 2;

Thus for a PH cubic r(t) = (x(t), y(t)) which is a line, its hodograph r′(t) is
expressed as r′(t) = h(t)(x0, y0) for a quadratic monic polynomial h(t) and a
nonzero point (x0, y0). In this case, only one of the following is true:

(a) h(t) = (t− c)2 for some real number c;
(b) h(t) = (t− c1)(t− c2) for some distinct real numbers c1 and c2;
(c) h(t) = (t− c1)(t− c1) for some non-real complex number c1.

If we identify a point p = (a, b) in the plane R2 with the complex number
pC = a +

√
−1b in the complex plane C, then a polynomial curve rC(t) =

x(t) +
√
−1y(t) is a PH curves (Farouki, 1994) if and only if there exists a

polynomial h(t) and a polynomial curve w(t) = u(t) +
√
−1v(t) such that

r′C(t) = h(t)w(t)2. (2)

Let r(t) be a PH cubic with r′C(t) = w(t)2. Since w(t) is linear, we can
write w(t) as

w(t) = w0(1− t) + w1t
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in the Bernstein-Bézier form. The hodograph r′C(t) then is expressed as

r′C(t) = w2
0(1− t)2 + w0w12(1− t)t+ w2

1t
2. (3)

Representing the PH cubic rC(t) as

rC(t) = p0(1− t)3 + p13(1− t)2t+ p23(1− t)t2 + p3t
3 (4)

in the Bernstein-Bézier form, we obtain

p1 = p0 +
1

3
w2

0, p2 = p1 +
1

3
w0w1, p3 = p2 +

1

3
w2

1

where p0 is arbitrary.

Theorem 2.1. ([7]) Let

rC(t) = p0(1− t)3 + p13(1− t)2t+ p23(1− t)t2 + p3t
3

be a nonlinear planar polynomial cubic in the Bernstein-Bézier form. Let Lk =
pk − pk−1 for k = 1, 2, 3 be the direction legs of the Bézier control polygon for
k = 1, 2, 3. Then the condition

L2
2 = L1 · L3

is sufficient and necessary to ensure that rC(t) is a PH curve.

Remark 1. If r′C(t) = w(t)2, then Theorem 2.1 holds. But if r′C(t) = h(t)w2
0 for

some constant w0 and a quadratic polynomial h(t) having different two zeros,
then Theorem 2.1 does not hold,

3. Geometric Hermite interpolation

In this section, we will solve the geometric Hermite interpolation problem
for planar Pythagorean-hodograph cubics.

Let pi and pf be the initial and final points, respectively. Let di = eiθi

and df = eiθf be the directional vectors at pi and pf respectively. For a given
pi, pf , di and df , the geometric Hermite interpolation problem is to find PH
cubics rC(t), which satisfy

rC(0) = pi, rC(1) = pf ,
r′C(0)

|r′C(0)|
= di,

r′C(1)

|r′C(1)|
= df . (5)

These equations are equivalent to∫ 1

0

r′C(t) dt = pf − pi,
r′C(0)

|r′C(0)|
= di,

r′C(1)

|r′C(1)|
= df . (6)

Moreover, considering translation and rotation, we may assume that pi = 0,
pf = k ∈ R, −π < θi ≤ 0 and θi ≤ θf < θi + 2π.

Suppose that θi = 0 and θf = 0 or π. Then the Hermite interpolations rC(t)
are given by

rC(t) = a3(1− t)2t+ (k − b)3(1− t)t2 + kt3 (7)
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for any positive real numbers a and

b =

{
any positive real number if θf = 0;

any negative real number if θf = π.

Now suppose that θi 6= 0 or (θf 6= 0 and θf 6= π). Then the Hermite
interpolants rC(t) must satisfy r′C(t) = w(t)2. From (3) and (4), the equations
(6) then becomes

w2
0 + w2

1 + w0w1 = 3k,
w2

0

|w0|2
= di,

w2
1

|w1|2
= df . (8)

We here note that if two complex numbers u0 and u1 satisfy

u2
0 + u2

1 + u0u1 = 3K,
u2
0

|u0|2
= di,

u2
1

|u1|2
= df , (9)

for some real number K such that{
k ·K > 0 if k 6= 0;

K = 0 if k = 0;

then δu0 and δu1 become solutions for the equations (8) of unknown w0 and
w1 where

δ =

{√
k
K if k 6= 0;

1 if k = 0.
(10)

Thus we can summarize the geometric Hermite interpolation problem as fol-
lows:

(a) Given data: a real number k, directional vectors di = eiθi and df = eiθf

where θi 6= 0 or (θf 6= 0 and θf 6= π);
(b) Find out u0 and u1, which satisfy |u0| = 1 and (9) for some real number

K;
(c) For such δ in (10), w0 = δu0 and w1 = δu1 become solutions for the

equations (8).
(d) For p0 = 0, p1 = 1

3w
2
0, p2 = 1

3 (w2
0 +w0w1), and p3 = 1

3 (w2
0 +w0w1 +

w2
1), the cubic rC(t), which are given by (4), are the solutions.

Let di = eiθi and df = eiθf be directional vectors. From now on, we will
find u0 and u1, which satisfy |u0| = 1 and (9) for some real number K. Then
from the second and the third equations in (9), the complex numbers u0 and
u1 with |u0| = 1 is given by

u0 = ±eiθi/2, u1 = ±reiθf/2

for some positive real number r. Let

fσ(r) = eiθi + r2eiθf + σ · rei(θi+θf )/2, (σ = −1,+1)

for the positive real number r. Then to solve the first equation in (9) for some
real number K is to find positive real numbers r which make f+1(r) or f−1(r)
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real numbers. Here we note that the real part and the imaginary part of fσ(r)
are

Re fσ(r) = r2 cos θf + σ · r cos
θi + θf

2
+ cos θi,

Im fσ(r) = r2 sin θf + σ · r sin
θi + θf

2
+ sin θi,

respectively.

3.1. Case of θi = 0.

Since sin θi = 0,

Im fσ(r1) = r21 sin θf + σ · r1 sin
θf
2

= r1 sin
θf
2

(
r12 cos

θf
2

+ σ

)
has the positive zero

sσ =
−σ

2 cos
θf
2

(11)

only when θf 6= π, where

σ =

{
−1 if 0 ≤ θf < π;

+1 if π < θf < 2π.
(12)

Figure 1. rσ(t) in Theorem 3.1 with θi = 0 and θf =
π
3 ,

2π
3 ,

3π
4 ,

5π
4 ,

4π
3 ,

5π
3 , respectively
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Theorem 3.1. Let θi and θf be constants with θi = 0, 0 < θf < 2π and
θf 6= π.

(a) There is a (unique) PH cubic rσ(t), which satisfies

rσ(0) = 0, rσ(1) ∈ R,
r′σ(0)

|r′σ(0)|
= eθi ,

r′σ(1)

|r′σ(1)|
= eθf , (13)

for σ in (12), and which have the first directional leg L1 of length 1 in
the Bézier control polygon.

(b) The PH cubic rσ(t) is expressed by

rσ(t) = p13(1− t)2t+ p23(1− t)t2 + p3t
3,

where

p1 = eiθi , p2 = eiθi + σsσe
i(θi+θf )/2, p3 = eiθi + σsσe

i(θi+θf )/2 + s2σe
iθf ,

with sσ =
−σ

2 cos
θf
2

.

(c) The table shows the shapes of the PH cubic rσ(t):

θf r+1(1) r−1(1) r+1(t) or r−1(t)

0 < θf <
2π
3 None + loop

θf = 2π
3 None 0 closed

2π
3 < θf < π None − simple
π < θf <

4π
3 − None simple

θf = 4π
3 0 None closed

4π
3 < θf < 2π + None loop

Remark 2. For the case of θi = 0 and θf = 0 or π, we can have such cubics
r(t) in Theorem 3.1, which are given by (7) with a = 1.

3.2. Case of −π < θi < 0 and θf = 0.

Since sin θf = 0,

Im fσ(r) = σ · r sin
θi
2

+ sin θi = sin
θi
2

(
σ · r + 2 cos

θi
2

)
has the positive zero

sσ = −2σ cos
θi
2

only when σ = −1.

Theorem 3.2. Let θi and θf be constants with −π < θi < 0 and θf = 0.

(a) There is a (unique) PH cubic r−1(t), which satisfies

r−1(0) = 0, r−1(1) ∈ R,
r′−1(0)

|r′−1(0)|
= eθi ,

r′−1(1)

|r′−1(1)|
= eθf ,

and which have the first directional leg L1 of length 1 in the Bézier
control polygon.
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(b) The PH cubic r−1(t) is expressed by

r−1(t) = p13(1− t)2t+ p23(1− t)t2 + p3t
3,

where

p1 = eiθi , p2 = eiθi − sσei(θi+θf )/2, p3 = eiθi − sσei(θi+θf )/2 + s2σe
iθf ,

with s−1 = 2 cos
θi
2

.

(c) The table shows the shapes of the PH cubic rσ(t):

θi r−1(1) r−1(t)

−π < θi < − 2π
3 − simple

θi = − 2π
3 0 closed

− 2π
3 < θi < 0 + loop

Figure 2. r−1(t) in Theorem 3.2 with θf = 0 and θi =
− 3π

4 , −
2π
3 , −

π
3 , respectively

3.3. Case of −π < θi < 0 and θf = π.

Since sin θf = 0,

Im fσ(r) = σ · r sin
θi + π

2
+ sin θi = cos

θi
2

(
σ · r + 2 sin

θi
2

)
has the positive root

sσ = −2σ sin
θi
2

only when σ = +1.

Theorem 3.3. Let θi and θf be constants with −π < θi < 0 and θf = π.

(a) There is a (unique) PH cubic r+1(t), which satisfies

r+1(0) = 0, r+1(1) ∈ R,
r′+1(0)

|r′+1(0)|
= eθi ,

r′+1(1)

|r′+1(1)|
= eθf ,

and which have the first directional leg L1 of length 1 in the Bézier
control polygon.
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(b) The PH cubic r+1(t) is expressed by

r+1(t) = p13(1− t)2t+ p23(1− t)t2 + p3t
3,

where

p1 = eiθi , p2 = eiθi + s+1e
i(θi+θf )/2, p3 = eiθi + s+1e

i(θi+θf )/2 + s2+1e
iθf ,

with s+1 = −2 sin
θi
2

.

(c) The table shows the shapes of the PH cubic rσ(t):

θi r+1(1) r+1(t)

−π < θi < −π3 − loop
θi = −π3 0 closed
−π3 < θi < 0 + simple

Figure 3. r+1(t) in Theorem 3.3 with θf = π and θi =
− 2π

3 , −
π
3 , −

π
4 , respectively

3.4. Case of −π < θi < 0 and 0 < θf < π.

Since θf > 0 and sin θi < 0, Im fσ(r) has the positive zero

sσ = −σ 1

2

· sin θi+θf
2

sin θf
.+

√
sin2 θi+θf

2 − 4 sin θf sin θi

4 sin2 θf
(14)

When θi = 0 and σ = −1, equation (14) equals (11).

Theorem 3.4. Let θi and θf be constants with −π < θi < 0 and 0 < θf < π.

(a) There are exactly two PH cubics r+1(t) and r−1(t), which satisfies

rσ(0) = 0, rσ(1) ∈ R,
r′σ(0)

|r′σ(0)|
= eθi ,

r′σ(1)

|r′σ(1)|
= eθf , (15)

for σ = +1,−1, and which have the first directional leg L1 of length 1
in the Bézier control polygon.
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(b) The PH cubics rσ(t) are expressed by

rσ(t) = p13(1− t)2t+ p23(1− t)t2 + p3t
3,

where

p1 = eiθi , p2 = eiθi + σsσe
i(θi+θf )/2, p3 = eiθi + σsσe

i(θi+θf )/2 + s2σe
iθf ,

with sσ = −σ ·A+
√
B where

A =
sin

θi+θf
2

2 sin θf
, B =

sin2 θi+θf
2 − 4 sin θf sin θi

4 sin2 θf
.

(c) The table shows the shapes of the PH cubics rσ(t):

η = θf − θi r+1(1) r+1(t) r−1(1) r−1(t)

η < 2π
3 + simple + loop

η = 2π
3 + simple 0 closed

2π
3 < η < 4π

3 + simple − simple
η = 4π

3 0 closed − simple
4π
3 < η − loop − simple

Figure 4. r+1(t) and r−1(t) in Theorem 3.4 with (θi, θf ) =
(−π6 ,

π
6 ), (−π3 ,−

π
3 ), (−π2 ,

π
3 ), (− 2π

3 ,
2π
3 ), (− 2π

3 ,
4π
3 ), respec-

tively
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3.5. Case of −π < θi < 0 and (−π < θi ≤ θf < 0 or π < θf < θi + 2π)

From the conditions, we have

sin θi < 0, sin θf < 0, σ · sin θi + θf
2

> 0

where

σ =

{
−1 if −π < θi ≤ θf < 0,

+1 if π < θf < θi + 2π.

Since

Im fσ(r) = r2 sin θf + σ · r sin
θi + θf

2
+ sin θi

= sin θf

(r + σ · 1

2

sin
θi+θf

2

sin θf

)2

−
sin2 θi+θf

2 − 4 sin θi sin θf

4 sin2 θf

 ,
Im f−σ(r) has no positive real root.

3.5.1. Case of sin2 θi+θf
2 −4 sin θi sin θf ≥ 0. In this case, Im fσ(r) has positive

real roots

sσ,1 = σ · (−A) + σ
√
B and sσ,2 = σ · (−A)− σ

√
B

where

A =
sin

θi+θf
2

2 sin θf
, B =

sin2 θi+θf
2 − 4 sin θi sin θf

4 sin2 θf
.

We note that sσ,1 = sσ,2 if and only if sin2 θi+θf
2 − 4 sin θi sin θf = 0. Thus we

obtain the PH cubics rσ,τ (t), which are expressed by

rσ,τ (t) = p13(1− t)2t+ p23(1− t)t2 + p3t
3

= eθi [3(1− t)2t+ 3(1− t)t2 + t3] + eθf (s2σ,τ t
3)

− e(θi+θf )/2sσ,τ [3(1− t)t2 + t3],

with τ = 1 and 2.
We can determine whether or not the PH cubic rσ,τ (t) has a loop, as follows:
(a) If rσ,τ (1) = 0, the PH cubic rσ,τ (t) is a closed curve, thus has a loop.
(b) Suppose that σ ·rσ,τ (1) < 0. Then the PH cubic rσ,τ (t) has a loop if and

only if rσ,τ (t) lies on the ray from 0 to the direction (−σ)e(θi+θf )/2 for some
0 < t < 1. This condition is equivalent to

3(1− t)2t+ 3(1− t)t2 + t3 = s2σ,τ t
3,

(−σ)2s2σ,τ t
3 · cos

θf − θi
2

≥ sσ,τ [3(1− t)t2 + t3]
(16)
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r−1(t) (r−1(1) > 0) r−1(t) (r−1(1) < 0)

r+1(t) (r+1(1) > 0) r+1(t) (r+1(1) < 0)

Figure 5. A criterion for determining whether the interpolant
has a loop or not

for some 0 < t < 1. We simplify (16) as
(sσ,τ − 1)t2 + 3t− 3 = 0,

(−σ) · 2sσ,τ t · cos
θf − θi

2
≥ 3− 2t

(17)

for some 0 < t < 1. Since sσ,τ > 1, from the first equation in (16), we obtain

Tστ,1 =
−3 +

√
9 + 12(s2σ,τ − 1)

2(s2σ,τ − 1)
.

Finally we see that the PH cubic rσ,τ (t) has a loop if and only if Mστ,1 ≥ 0,
where

Mστ,1 = (−σ) · 2sσ,τTστ,1 · cos
θf − θi

2
− 3 + 2Tστ,1.
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(c) Suppose that σ ·rσ,τ (1) > 0. Then the PH cubic rσ,τ (t) has a loop if and

only if rσ,τ (t)− rσ,τ (1) lies on the ray from rσ,τ (1) to the direction σe(θi+θf )/2

for some 0 < t < 1. This condition is equivalent to
3(1− t)2t+ 3(1− t)t2 + t3 − 1 = s2σ,τ (t3 − 1),

(−σ) · 2s2σ,τ (t3 − 1) · cos
θf − θi

2
≤ sσ,τ [3(1− t)t2 + t3 − 1]

(18)

for some 0 < t < 1. We simplify (18) as
(t− 1)[(1− s2σ,τ )t2 − (2 + s2σ,τ )t+ (1− s2σ,τ )] = 0,

(−σ) · 2s2σ,τ (t3 − 1) · cos
θf − θi

2
≤ sσ,τ (−2t3 + 3t2 − 1)

(19)

for some 0 < t < 1. Since sσ,τ < 1, from the first equation in (18), we obtain

Tστ,2 =
2 + s2σ,τ −

√
3s2σ,τ (4− s2σ,τ )

2(1− s2σ,τ )
.

Finally we see that the PH cubic rσ,τ (t) has a loop if and only if Mστ,2 ≤ 0,
where

Mστ,2 = (−σ) · 2s2σ,τ (T 3
στ,1 − 1) · cos

θf − θi
2

− sσ,τ (−2T 3
στ,1 + 3T 2

στ,1 − 1).

r−1(t) r+1(t)

Figure 6. Domain of (θi, θf ) for the Hermite interpolants
rσ(t) in Theorem 3.5

Theorem 3.5. Let θi and θf be constants with −π < θi < 0 and (−π < θi ≤
θf < 0 or π < θf < θi + 2π).
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A: θi = −1, θf = −0.05

B: θi = −1.5, θf = −0.05

C: θi = −2.1, θf = −0.1
D: θi = −0.5− 2π

3 , θf = −0.5

E: θi = −2.8, θf = −0.5
F: θi = −2.8, θf = −2.8 + 2π

3

G: θi = −3.0, θf = −1.0 H: θi = −3.1, θf = −1.5 I: θi = −3.1, θf = −2.5

Figure 7. r−1,1(t) and r−1,2(t) in Theorem 3.5
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(a) There are PH cubics rσ,τ (t), which satisfies

rσ,τ (0) = 0, rσ,τ (1) ∈ R,
r′σ,τ (0)

|r′σ,τ (0)|
= eθi ,

r′σ,τ (1)

|r′σ,τ (1)|
= eθf , (20)

for τ = 1 and 2,

σ =

{
−1 if −π < θi ≤ θf < 0;

+1 if π < θf < θi + 2π,

and which have the first directional leg L1 of length 1 in the Bézier

control polygon, if and only if, sin2 θi+θf
2 −4 sin θi sin θf ≥ 0. Moreover,

rσ,1 = rσ,2 if and only if sin2 θi+θf
2 − 4 sin θi sin θf = 0.

(b) The PH cubics rσ,τ (t) are expressed by

rσ,τ (t) = p13(1− t)2t+ p23(1− t)t2 + p3t
3,

where

p1 = eiθi , p2 = eiθi +σsσ,τe
i(θi+θf )/2, p3 = eiθi +σsσ,τe

i(θi+θf )/2+s2σ,τe
iθf ,

with sσ,1 = σ · (−A) + σ
√
B and sσ,2 = σ · (−A)− σ

√
B, where

A =
sin

θi+θf
2

2 sin θf
, B =

sin2 θi+θf
2 − 4 sin θf sin θi

4 sin2 θf
.

(c) The table shows the shapes of the PH cubics r−1,τ (t):

η = θf − θi, ψ = θi + θf r−1,1(1) r−1,1(t) r−1,2(1) r−1,2(t)

A: −π < ψ, η < 2π
3
, M−2,1 ≥ 0 + loop + loop

B: −π < ψ, η < 2π
3
, M−2,1 < 0, M−1,1 ≥ 0 + loop + simple

C: −π < ψ, η < 2π
3
, M−1,1 < 0 + simple + simple

D: −π < ψ, η = 2π
3

0 closed + simple

E: η > 2π
3

− simple + simple

F: ψ < −π, η = 2π
3

− simple 0 closed

G: ψ < −π, η < 2π
3
, M−2,2 > 0 − simple − simple

H: ψ < −π, η < 2π
3
, M−2,2 ≤ 0, M−1,2 > 0 − simple − loop

I: ψ < −π, η < 2π
3
, M−1,2 ≤ 0 − loop − loop

(d) The table shows the shapes of the PH cubics r+1,τ (t):
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η = θf − θi, ψ = θi + θf r+1,1(1) r+1,1(t) r+1,2(1) r+1,2(t)

A′: ψ < π, η > 4π
3
, M+2,1 ≥ 0 − loop − loop

B′: ψ < π, η > 4π
3
, M+2,1 < 0, M+1,1 ≥ 0 − loop − simple

C′: ψ < π, η > 4π
3
, M+1,1 < 0 − simple − simple

D′: ψ < π, η = 4π
3

0 closed − simple

E′: η < 4π
3

+ simple − simple

F′: ψ > π, η = 4π
3

+ simple 0 closed

G′: ψ > π, η > 4π
3
, M+2,2 > 0 + simple + simple

H′: ψ > π, η > 4π
3
, M+2,2 ≤ 0, M+1,2 > 0 + simple + loop

I′: ψ > π, η > 4π
3
, M+1,2 ≤ 0 + loop + loop

3.5.2. Case of sin2 θi+θf
2 − 4 sin θi sin θf < 0. In this case, Im fσ(r) has no

positive real root.

4. Conclusion

In this paper, we present the geometric Hermite interpolation for planar
PH cubics. For every Hermite data, we determine the exact number of the
G1 Hermite interpolants and also explicitly represent the desired interpolants.
Moreover we also find a simple and self-contained criterion for determining
whether the interpolants contain a loop or not. We want to apply the method-
ology to the spatial case.
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